Check for updates

Oxidative stress and the role of redox signalling in chronic kidney disease

Seiji Kishi 🕲 , Hajime Nagasu 🕲 , Kengo Kidokoro 🕲 & Naoki Kashihara 🕲 🖂

Abstract

Chronic kidney disease (CKD) is a major public health concern, underscoring a need to identify pathogenic mechanisms and potential therapeutic targets. Reactive oxygen species (ROS) are derivatives of oxygen molecules that are generated during aerobic metabolism and are involved in a variety of cellular functions that are governed by redox conditions. Low levels of ROS are required for diverse processes. including intracellular signal transduction, metabolism, immune and hypoxic responses, and transcriptional regulation. However, excess ROS can be pathological, and contribute to the development and progression of chronic diseases. Despite evidence linking elevated levels of ROS to CKD development and progression, the use of low-molecular-weight antioxidants to remove ROS has not been successful in preventing or slowing disease progression. More recent advances have enabled evaluation of the molecular interactions between specific ROS and their targets in redox signalling pathways. Such studies may pave the way for the development of sophisticated treatments that allow the selective control of specific ROS-mediated signalling pathways.

Sections

Introduction

The formation and regulation of ROS

Major sources of ROS in the kidney

The role of ROS in inflammation

ROS and intracellular organelle function

Chronic kidney diseases

Targeting ROS pathways

Conclusions

Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan. Ze-mail: kashinao@med.kawasaki-m.ac.jp

Key points

• Oxidative stress occurs when the generation of oxidants exceeds the metabolizing or degradative capacity of antioxidants.

• Reactive oxygen species (ROS) are radical or molecular species that contain oxygen and are produced by cellular organelles; they can cause damage to cells and tissues when present in excessive amounts.

• Although potentially harmful in excess, ROS also contribute to cell survival and can act as signalling molecules at appropriate intracellular concentrations.

• Within the kidney, ROS are produced by a variety of organelles and enzyme systems, and contribute to a range of physiological and pathological processes.

• The involvement of ROS in pathological processes suggests that therapeutic targeting of ROS may be beneficial; a number of therapeutic approaches are under investigation, including targeting of Nrf2.

Introduction

Oxidative stress is defined as a state in which the oxidative capacity exceeds the antioxidant capacity of a body or system¹. It may occur due to the increased production of reactive oxygen species (ROS), a reduction in antioxidant capacity, or a combination of both. ROS are unstable oxygen-containing molecules that readily react with other molecules within a cell. They are generated through processes such as respiration, inflammation and exposure to radiation, UV light and chemicals such as smoke and asbestos, or intense physical activity. In 1956, Harman proposed that ROS contribute to the ageing process². Since then, numerous studies have investigated the effects of ROS. Traditionally, ROS have been viewed as harmful molecules that cause oxidative damage to lipids, proteins and DNA through their reactive properties. However, emerging evidence has revealed that ROS also function as important secondary messengers in cellular signalling pathways^{3,4}. For example, cytoplasmic ROS induce the activity of AMP-activated protein kinase (AMPK), which has a crucial role in regulating cellular metabolism⁵. Mitochondrial ROS (mtROS) can also affect HIF1α stability and cell proliferation⁶. Oxidative stress can also activate the transcription factor NF-KB, which induces the expression of cytokines and chemokines to regulate inflammation⁷. Chronic kidney disease (CKD) is characterized by both oxidative stress and inflammation, both of which not only contribute to the progression of CKD but can also lead to the development of cardiovascular disease and other complications⁸. Reports have also demonstrated the involvement of ROS-producing enzymes, oxidants, including hydrogen peroxide (H2O2), and dysregulation of the NO synthase (NOS) pathway in pathological conditions, including kidney disease⁸⁻¹¹. In this Review, we describe the fundamental relevance of ROS to biological processes, including physiological processes and disease pathogenesis with a focus on kidney disease. We also outline the current status of clinical trials that aim to target ROS signals in humans.

The formation and regulation of ROS

Classification of ROS by type and chemistry

The oxygen molecule that is essential for sustaining life is known as triplet oxygen, which exists in its ground state and is represented by

the formula ³O₂. ROS is a term used to describe a group of reactive molecules that are formed from oxygen molecules. ROS can be divided into non-radical species and free radical species, with the latter defined by the presence of an unpaired electron, making them highly unstable and reactive¹¹ (Table 1). In the narrowest sense, four types of ROS exist: singlet oxygen (¹O₂), which has strong oxidative properties and is produced when ³O₂ absorbs energy and becomes excited to the singlet state: superoxide anion O_2^- , which is a one-electron reduced form of oxygen; H₂O₂, which is a two-electron reduced form of superoxide; and hydroxyl radicals (HO^{\circ}), which is formed from H₂O₂ (ref. 12) (Fig. 1). The primary and most abundant intracellular ROS is superoxide anion, which is produced by the mitochondrial respiratory chain and through the actions of the NADPH oxidase (NOX) family¹³; its accumulation is commonly associated with oxidative stress. Superoxide can be converted to H₂O₂ by superoxide dismutases (SODs); H₂O₂ itself is also recognized as a major ROS that is involved in redox control of biological activities¹⁴. In addition, several other oxygen-containing non-radical and free radical species, including organic hydroperoxides (ROOH), alkoxyl radicals (RO') and peroxyl radicals (ROO'), can oxidize essential cell components. Moreover, superoxide anion can scavengenitric oxide (NO) directly or react with NO to form peroxynitrite (ONOO⁻), a highly reactive nitrogen species (RNS) that can damage proteins, lipids and DNA. Other RNS include haem-NO, dinitrosyl-iron complexes, S-nitrosothiols, NO₂, dinitrogen trioxide, nitrosopersulfides and nitroxyl¹⁵. Together with the above-mentioned ROS, oxygen-containing species and RNS form a large and important group of active redox agents that have critical roles in several intracellular and extracellular processes^{16,17}.

ROS generation and regulation

The production of ROS in vivo is largely induced by intracellular biological processes, such as oxidative phosphorylation (OXPHOS) and protein disulfide bridge formation, or through triggers such as foreign substances, microbial invasion and cytokines. Intracellular organelles, mitochondria, the endoplasmic reticulum (ER) and peroxisomes are the main sites of ROS production (Fig. 2a). ROS are produced by a variety of enzymes, including xanthine oxidase (XO), cyclooxygenase, lipoxygenase, NOS, haem oxygenase, peroxygenase, haem protein and NOX¹⁸.

Regardless of their mechanism of production, excessive ROS can damage living organisms and have been linked to carcinogenesis, lifestyle-related diseases and other chronic conditions and ageing. Hydroxyl radicals – which are formed from H_2O_2 and superoxide via the Haber–Weiss or Fenton reactions, using metal ions such as iron and copper as catalysts¹⁹ – are highly reactive and oxidize proteins, lipids, carbohydrates, nucleic acids and other biological components.

Due to their short half-life, the effects of hydroxyl radicals are limited and confined to the vicinity in which they are produced. However, oxidative damage is also limited by the actions of ROS scavenging systems, which regulate levels of H₂O₂ and thus hydroxyl radicals (Fig. 1). Two types of ROS scavenging systems exist: antioxidant enzyme and non-enzyme systems. Key antioxidant enzymes include SOD, catalase (CAT), and glutathione peroxidase (GPX). Three types of SOD exist – cytoplasmic (SOD1), mitochondrial (SOD2), and extracellular matrix/plasma membrane outer surface (SOD3) – which catalyse the dismutation of superoxide through the reaction $2O_2^- + 2H^+ \rightarrow H_2O_2 + O_2$. CAT is present in peroxisomes and catalyses the reaction $2H_2O_2 \rightarrow 2H_2O + O_2$. In the presence of glutathione, GPX degrades H_2O_2 to H_2O^{11} . Thioredoxin (TRX) and TRX-related protein are disulfide reductases that have roles in regulating the cellular redox state. TRX is induced by various oxidative stresses and

Table 1 | Classification of ROS and their properties

Category	Reactive oxygen species	Properties				
Non-radical	Singlet oxygen (¹ O ₂)	Exhibits strong oxidizing capacity involved in a variety of biological processes				
	Hydrogen peroxide (H ₂ O ₂)	Low oxidative capacity; involved in a wide range of physiological processes				
	Organic hydroperoxides (ROOH)	Organic compounds that contain a peroxide group (-OOH) bonded to a hydrocarbon grou Includes lipid peroxides derived from polyunsaturated acids (PUFAs) and sterols; involved in immune system signalling and cell death via ferroptosis				
	Hypochlorous acid (HOCl) and hypobromous acid (HOBr)	Reactive molecules produced by myeloperoxidase from $\rm H_2O_2$ in vacuoles of neutrophils for pathogen defence				
	Electronically excited carbonyl (R–C=O)	A highly reactive species that is electronically excited, typically by absorbing energy such as light				
	Ozone (O ₃)	An environmental toxin				
	Peroxynitrite (ONOO ⁻)	Formed by the reaction of superoxide with nitric oxide				
Free radical	Superoxide (O_2^{-})	Major source of H_2O_2 ; low reactivity as radicals				
	Hydroxyl radicals (HO*)	Short-lived, and highly oxidative radical that reacts with enzyme proteins, cytoskeletal proteins, lipids, carbohydrates and nucleic acids				
	Peroxyl radical (ROO*)	Peroxyl radicals are formed by the direct reaction of oxidized alkyl radicals with oxygen and are also formed by the decomposition of alkyl peroxides; they have a strong oxidative potential and can extract hydrogen from molecules with lower standard reduction potentials; this reaction is often observed during the propagation phase of lipid peroxida				
	Alkoxyl radical (RO*)	Intermediate in lipid peroxidation; moderate reactivity				
	Nitric oxide or nitrogen monoxide (NO*)	Major source of H_2O_2 ; low reactivity as radicals				
	Nitrogen dioxide (NO [•] ₂)	From ONOO' decomposition				

demonstrates ROS scavenging activity in combination with peroxiredoxin (PRX), a TRX-dependent peroxidase. The active site of TRX consists of the sequence –Cys–Gly–Pro–Cys–, and it exists in an oxidized form with an –S=S– bond between two cysteine residues and a reduced form with an –SH–SH. Reduced TRX binds to an oxidized target protein and reduces the disulfide bond of the target protein to a thiol group (–SH). During this process, the thiol group of TRX itself becomes oxidized. The oxidized form of TRX is then reduced by TRX reductase in the presence of NADPH²⁰. Several low-molecular-weight compounds with antioxidant properties can also protect from oxidative injury. These compounds can be synthesized by the body or obtained through food. Examples include ascorbic acid, α -tocopherol and bilirubin, which serve to supplement and scavenge radicals²¹.

Physiological function and biotoxicity of ROS

Traditionally, oxidative stress has been considered to result from an imbalance between the production and scavenging of ROS, leading to damage to biomolecules, such as DNA, lipids and proteins^{22,23}. Although ROS are clearly detrimental to organisms - as evidenced by the finding that mice with mitochondria-specific deletion of Sod are unable to survive²⁴ – a number of studies have also shown that mitochondria-derived and other ROS production pathways are involved in the regulation of a variety of physiological cellular functions. Thus, low concentrations of ROS are produced as needed and can be considered to have a hormesis effect, whereby it is harmful at high concentrations but beneficial at low concentrations^{25,26}. Aquaporins are responsible for transporting H₂O₂ across membranes to facilitate redox signalling. However, the spatial distribution of H_2O_2 is not uniform. The concentration of H_2O_2 in plasma is estimated to be approximately $1-5\,\mu$ M, which is more than 100 times higher than the concentration of H_2O_2 inside cells^{11,13}. In addition, concentration gradients exist from the extracellular to the intracellular environment and between different organelles within the intracellular environment. The classification of a given H_2O_2 concentration as beneficial or detrimental may depend on factors such as cell type, level of organ complexity or duration of H_2O_2 exposure¹³. On the other hand, normal cell function might also be disrupted when levels of H_2O_2 are too low, potentially owing to a diminished cellular response to stress and a paradoxical increase in oxidative stress (a process known as reductive stress)^{27,28} (Fig. 2b).

ROS have numerous physiological roles at low concentrations. For example, the production of superoxide by neutrophils and macrophages contributes to the phagocytic elimination of foreign substances. Oxidative conditions are also essential for the process of autophagy, as evidenced by the finding that starvation of cells in vitro stimulates the production of ROS and H_2O_2 , whereas antioxidant treatment inhibits the starvation-induced formation of autophagosomes and associated protein degradation²⁹. The cysteine protease HsAtg4 is also a direct target of oxidation by H_2O_2 , and the presence of HsAtg4 is essential for autophagosome formation^{23,29}. Furthermore, H_2O_2 has a crucial role in thyroid biosynthesis. Specifically, the addition of iodine to tyrosine residues on thyroglobulin, which leads to the production of thyroid hormones, requires H_2O_2 as an oxidizing agent³⁰.

A 2005 study found that hypoxic stabilization of hypoxia-inducible factor 1 α (HIF1 α) and HIF2 α requires complex III of the mitochondrial electron transport chain (ETC) and that an increase in ROS leads to the stabilization of the HIF α^{31} . This finding indicates that mitochondria may function as oxygen sensors, signalling the stabilization of HIF1 α and HIF2 α under hypoxic conditions by releasing ROS into the cytoplasm. According to the free radical theory of ageing, ROS produced by complex III during respiration oxidizes cellular components, such as lipids, proteins and nucleic acids, leading to cellular dysfunction and shortening lifespan¹.

$H_2O_2 + O_2$ CAT H_2O_2 H_2O_2	H_2O_2 Fe ³⁺ Fe ²⁺ / O_2^-+ Fenton Haber- Cl-	$\begin{array}{c} \textbf{D}_2 \rightarrow \textbf{HO}^{\bullet} \\ \hline \textbf{P}_2 \rightarrow \textbf{Fe}^{2*} + \textbf{O}_2 \\ \hline \textbf{P}_2 \rightarrow \textbf{Fe}^{2*} + \textbf{O}_2 \\ \hline \textbf{P}_2 \rightarrow \textbf{Fe}^{3*}/\textbf{Cu}^{2*} + \textbf{HO}^{-} + \textbf{HO}^{\bullet} (Fenton reaction) \\ \hline \textbf{H}_2 \textbf{O}_2 \rightarrow \textbf{HO}^{\bullet} + \textbf{OH}^{-} + \textbf{O}_2 (Haber-Weiss reaction) \\ \hline \textbf{P}_2 \rightarrow \textbf{HO}^{\bullet} + \textbf{OH}^{-} + \textbf{O}_2 (Haber-Weiss reaction) \\ \hline \textbf{P}_2 \rightarrow \textbf{HO}^{\bullet} + \textbf{OH}^{-} + \textbf{O}_2 (\textbf{H}_2 \textbf{O}) \\ \hline \textbf{HO}^{\bullet} \rightarrow \textbf{HO}^{\bullet} + \textbf{O}_2 \\ \hline \textbf{HO}^{\bullet} \rightarrow \textbf{HO}^{\bullet} \rightarrow \textbf{HO}^{\bullet} \rightarrow \textbf{HO}^{\bullet} \\ \hline \textbf{HO}^{\bullet} \rightarrow \textbf{HO}^{\bullet} \rightarrow \textbf{HO}^{\bullet} \rightarrow \textbf{HO}^{\bullet} \rightarrow \textbf{HO}^{\bullet} \\ \hline \textbf{HO}^{\bullet} \rightarrow \textbf$		
2GSH NAI	DPH	Enzymes	Target	Reaction
GPx	:	Superoxide dismutase (SOD)	O ₂ -	$2O_2^- + 2H^+ \rightarrow H_2O_2 + O_2$
GSSG 🖌 🎽 NAI	DP*	Catalase (CAT)	H_2O_2	$2H_2O_2 \rightarrow 2H_2O + O_2$
H ₂ O		Glutathione peroxidase (GPx)	H_2O_2	$2\text{GSH} + \text{H}_2\text{O}_2 \rightarrow \text{GSSG} + 2\text{H}_2\text{O}$
		Myeloperoxidase (MPO)	H_2O_2	$\mathrm{H_2O_2} + \mathrm{CI}^{\scriptscriptstyle -} \rightarrow \mathrm{HOCI}^{\scriptscriptstyle -} + \mathrm{OH}$

Fig. 1| Generation of ROS and its regulation. Main pathways for the generation and metabolism of reactive oxygen species (ROS). Superoxide (O2) is converted to H_2O_2 by superoxide dismutase (SOD). Hydrogen peroxide (H₂O₂) is eliminated by catalase (CAT) and glutathione peroxidase (GPx). Myeloperoxidase (MPO) produces hydroxyl radicals (HO') and hypochlorous acid (HOCl) from H₂O₂. The Fenton and Haber-Weiss reactions are chemical processes that generate ROS in biological systems, particularly within cells. In the Fenton reaction hydrogen peroxide reacts with metal ions to produce hydroxyl radicals, whereas in the Haber-Weiss reaction hydroxyl radicals are produced from H_2O_2 and O_2^- . GSH, glutathione; GSSG, glutathione disulfide.

The lifespan-extending effects of caloric restriction have been demonstrated in studies in non-human primates and human populations with phenotypes common to calorie-restricted monkeys and rodents³²⁻³⁴. One study investigated the reduction of oxidative stress in mitochondria in the anti-aging mechanism of calorie restriction both in vivo and in vitro. Calorie restriction reduced oxidative stress and simultaneously stimulated mitochondrial proliferation through phosphorylation of the peroxisome proliferator-activated receptor- γ coactivator 1 α (PGC1 α) signalling pathway³⁵. In addition, mitochondria consumed less oxygen under conditions of calorie restriction than under normal conditions, had a lower membrane potential and were able to maintain ATP production despite lower levels of ROS³⁵.

This mechanism may also contribute to the antioxidant and lifespan-extending effects of moderate exercise through energy expenditure. In addition, activation of the NAD-dependent histone deacetylase, sirtuin, can induce the deacetylation of transcription factors such as p53, NF- κ B, forkhead box O (FOXO) and PGC1 α , potentially contributing to the increase in cell lifespan³⁶. The effects of calorie restriction and exercise on kidney disease are controversial. However, it is clear that alterations in oxidative stress contribute to their effects; further research is needed to better understand this relationship. Importantly, ROS and its associated oxidative stress can lead to a decrease in the bioactivity of NO – a short-lived diatomic signalling molecule that is important for endothelial and vascular function.

Antioxidants

Antioxidants protect mammalian cells from damage caused by ROS and related species. They work by directly scavenging ROS, inhibiting their formation or repairing damage caused by ROS. Some antioxidants, such as SOD, are produced endogenously, whereas others, such as vitamin C, must be obtained from the diet²¹. Direct antioxidants are short-lived and have redox activity. They are used up during antioxidant activity and must therefore be replenished or regenerated. Examples of direct antioxidants include antioxidant vitamins, glutathione and *N*-acetylcysteine, which can directly react with and scavenge ROS²¹.

Antioxidant stress proteins, such as haem oxygenase 1 (HO1), are also important in protecting tissues and reducing inflammation. HO1 is an enzyme that degrades toxic free haem and produces cytoprotective

substances³⁷. Haem-containing proteins contribute to essential physiological functions, but upon injury they release free haem, causing oxidative stress, inflammation and apoptosis³⁸. HO1 has been shown to confer protection in several models of acute kidney injury (AKI)^{39–41}. It degrades haem to produce iron ions, carbon monoxide (CO) and biliverdin, which is then converted to bilirubin by biliverdin reductase³⁹. Bilirubin has antioxidant effects, whereas CO has signalling and anti-inflammatory effects^{42,43}.

Major sources of ROS in the kidney

The kidney has one of the highest rates of oxygen consumption of all organs. Although the kidney comprises only 0.5% of total body weight, it is responsible for about 7% of the total oxygen consumption of the body⁴⁴. Moreover, the mitochondrial density of the kidneys is second only to that of the myocardium⁴⁵. Hence, it is important to consider the relationship between the kidney and ROS. Mitochondria and the NOX family are important sources of endogenous ROS in the kidney (Fig. 2).

Mitochondria

Mitochondria contain both an outer and an inner membrane; the five complexes I-V that make up the ETC are located in the inner membrane and use redox reactions to produce ATP. Specifically, NADH and succinate are oxidized in complex I and complex II, respectively, to reduce ubiquinone to ubiquinol. Ubiquinol is then oxidized in complex III to reduce cytochrome c. Cytochrome c is then oxidized in complex IV and transfers electrons to oxygen molecules, resulting in the production of water⁴⁶. This process results in the establishment of an H⁺ gradient across the inner mitochondrial membrane, which drives the synthesis of ATP. Electrons that are leaked during electron transfer reduce oxygen molecules, resulting in the production of superoxide. Superoxide that is generated in the intermembrane space of mitochondria is converted to oxygen and H₂O₂ by SOD1, whereas superoxide that is generated in the mitochondrial matrix is converted by SOD2. H₂O₂ is then reduced to water by GPX and PRX. Thus, ROS are continuously produced by mitochondria, but are eliminated by antioxidant enzymes to maintain redox balance. However, when the excess production of ROS exceeds antioxidant capacity due to ageing or disease, the redox balance is disturbed, leading to oxidative stress⁴⁷.

ER and peroxisomes

Within the ER, H_2O_2 is mainly produced by ER oxidoreductin 1 (ERO1) during the formation of disulfide bonds in oxidative protein folding⁴⁸. In addition, NOX4 also produces H_2O_2 in the ER⁴⁹. Similar to mitochondria and the ER, peroxisomes are organelles that contain antioxidant enzymes such as CAT, SOD1 and PRX5, which maintain the balance of oxidative levels in the cell⁴⁹. Fatty acid β -oxidation by acyl-CoA oxidase (ACOX) is also a major source of H_2O_2 in peroxisomes⁵⁰. Several enzymes in peroxisomes, including XO, D-amino acid oxidase, D-aspartate oxidase, L-pipecolic acid oxidase, L- α -hydroxyacid oxidase, and polyamine oxidase, also contribute to the production of peroxisomal ROS. Peroxisomes are abundant in the kidney, particularly in the proximal tubules, with few present in the glomerulus, distal tubules and collecting ducts^{51,52}.

NADPH oxidases

Seven homologues of NOX exist: NOX1–NOX5, DUOX1 and DUOX2. Of these, NOX2 and NOX4 are highly expressed in the kidney⁵³. NOX2 is a six-transmembrane protein that is anchored to the plasma membrane and has cytosolic amino-terminal and carboxy-terminal ends. Activation of NOX2 requires its interaction with p22phox and the translocation of p47phox, p67phox and p40phox to the plasma membrane⁵⁴, resulting in Rac-mediated activation of its effector, p67phox, and NOX2 activation. Three Rac GTPases exist: Rac1, which is mainly found in peripheral tissues; Rac2, which is mainly distributed in myeloid cells; and Rac3, which is mainly found in the central nervous system.

In the kidney, NOX2 is involved in tubular functions, such as electrolyte transport and glucose handling⁵³. Both NOX2 and NOX4 are also a source of the endothelium-derived vasodilator H_2O_2 in the renal artery⁵⁵. High expression of *Nox2* has been observed in several mouse models of diabetes^{56,57}. In C57BL/KsJ diabetic mice, downregulation of

Nox2 expression with candesartan and pioglitazone led to an increase in SOD expression, decreased oxidative stress, improved glucose tolerance and reduced kidney and heart fibrosis⁵⁶. Similarly, treatment of diabetic Akita mice with a human recombinant angiotensin-converting enzyme 2 attenuated levels of NOX2 in the kidney, and decreased renal oxidative stress, urinary albumin, renal fibrosis and systolic blood pressure⁵⁷. These findings suggest that NOX2 may have a role in the development of renal oxidative stress in diabetes and the development of diabetic kidney disease (DKD)⁵³.

Like NOX2, activation of NOX4 requires it to bind the transmembrane protein p22phox. However, in addition to localizing to the plasma membrane, NOX4 also localizes to intracellular membranes, including mitochondria, the ER, focal adhesions and nuclei⁵⁸. Aberrant upregulation of NOX4 has been proposed to have a pathogenic role in various kidney diseases, including DKD, hypertension-associated kidney disease and polycystic kidney disease, by increasing ROS production and causing mitochondrial damage⁵⁸. However, interstitial fibrosis and oxidative stress were exacerbated following unilateral ureteral obstruction (UUO) in *Nox4*-knockout mice compared with wild-type mice⁵⁹, suggesting that abnormally high or low concentrations of ROS may have pathological consequences. Whether NOX4 has a net positive or negative effect in the kidney remains unclear.

Xanthine oxidase

Xanthine oxidoreductase (XOR) is a member of the highly conserved family of molybdoflavoenzymes, which are widely distributed in prokaryotic and eukaryotic organisms. In mammals, XOR is distributed in various organs, including the liver and vascular endothelial cells, and is also abundant in the mammary gland. Its main role is the catabolism of nucleotides, including adenine and guanine⁶⁰. In mammals, XOR is

Fig. 2| Sources of ROS production and their consequences. a, Mitochondria, the endoplasmic reticulum (ER) and peroxisomes are the primary sites of reactive oxygen species (ROS) production. Enzymes and enzyme complexes involved in this process include ER oxidoreductin 1 (ERO1), superoxide dismutase (SOD), acyl-CoA oxidase (ACOX), xanthine oxidase (XO), p-amino acid oxidase (DAO) and NADPH oxidase (NOX). Aquaporins (AOP) can transport H₂O₂ across membranes; however, H2O2 can also diffuse through lipid membranes such as cell membranes and the membranes of intracellular organelles. b, The effects of ROS on cellular processes differ according to their concentration. Generally, low concentrations of H2O2 are necessary for normal life processes and can induce responses to stress, whereas high concentrations can cause inflammatory reactions leading to growth arrest and cell death. However, very low levels can also be detrimental.

post-translationally converted to xanthine dehydrogenase, which accepts NAD⁺ as an electron acceptor, or XO⁶¹. Circulating XO can adhere to endothelial cells by binding to endothelial glycosaminoglycans, and donates electrons to molecular oxygen, creating O_2^- and H_2O_2 (ref. 62).

XO activation may lead to the excessive production of ROS and cellular dysfunction. A clinical trial that compared the effects of XO inhibitors and urate-lowering drugs on endothelial cell function in patients with heart failure demonstrated an improvement in endothelial function only with the XO inhibitor, as a consequence of reduced oxidative stress⁶³. In line with this finding, we have shown that XO inhibitors preserve glomerular endothelial function and rescue impaired glomerular permeability in diabetic mice, suggesting that XO activation has an important role in the pathogenesis of DKD⁶⁴. Thus, XO is also a potential therapeutic target for vascular diseases, including those that affect the kidney.

Myeloperoxidase

Myeloperoxidase (MPO) is a haem-containing peroxidase that is synthesized during myeloid differentiation and stored in the azurophil granules of leukocytes. In contrast to O_2^- , which in phagocytes is produced by NOX2 and is released out of the cell, MPO generates hypochlorous acid (HOCl) and other oxidants that are used by the phagocytes to kill pathogens⁶⁵. MPO-derived oxidants are also implicated in the formation of neutrophil extracellular traps, which support the capture and killing of bacteria^{66,67}. Typically, MPO catalyses the oxidation of halide ions via H₂O₂ to produce HOCl. However, in various diseases, MPO is released extracellularly by degranulation, and oxidizes not only halide ions but also other substrates to mediate tissue damage68. MPO contributes to the oxidative modification of LDL by catalysing lipid peroxidation⁶⁹, and available evidence suggests a correlation between circulating blood MPO concentrations and MPO-derived oxidized molecules and coronary artery disease⁷⁰. Microscopic polyangiitis (MPA) is a systemic small-vessel vasculitis that primarily affects the kidneys, lungs and nerves⁷¹. In Japan and other parts of Asia, many cases of MPA are associated with anti-neutrophil cytoplasmic autoantibodies (ANCAs), with antigen specificity for MPO (MPO-ANCA)72,73, MPO-ANCA binds to MPO and recognizes specific epitopes on the surface of polymorphonuclear neutrophils. Subsequent activation of neutrophils increases the binding of polymorphonuclear neutrophils to the endothelium and the generation of superoxide anion radicals and H₂O₂ via oxidative bursts. ANCA-positive necrotizing glomerulonephritis is associated with marked infiltration of the glomerulus by neutrophils and monocytes, which can lead to rapidly progressive glomerulonephritis⁷⁴.

NOS

NO and other bioactive nitrogen species have important roles in various physiological functions such as the kidney, cardiovascular and metabolic systems¹⁵. NO is produced by L-arginine-dependent NOS and can also be created through the nitrate-nitrite-NO pathway, which involves the serial reduction of inorganic nitrate and nitrite^{75,76}. The NOS pathway is the primary means by which endogenous NO is generated in the body. However, the nitrate-nitrite-NO pathway is particularly important in conditions in which the activity of the NOS system is reduced or non-functional, such as under conditions of hypoxia, ischaemia or low pH. This pathway can be enhanced by dietary means¹⁵.

Three types of NOS exist. Neuronal NOS (nNOS; also known as NOS1) and endothelial NOS (eNOS; also known as NOS3) are constitutively expressed, whereas inducible NOS (iNOS; also known as NOS2) is associated with inflammatory conditions. The Human Protein Atlas and other findings indicate that nNOS is expressed in cortical tubules, whereas eNOS is expressed in glomeruli¹⁵. The expression of iNOS in the normal kidney is controversial⁷⁷. Although several studies have demonstrated constitutive expression of iNOS, other studies have found that iNOS protein and mRNA levels increase dramatically in response to stimuli such as ischaemia–reperfusion injury (IRI)⁷⁸, sepsis⁷⁹ and haemorrhagic shock⁸⁰.

Regardless of its mode of generation. NO binds to the reduced haem site of soluble guanylyl cyclase (sGC), activating the enzyme and inducing production of the second messenger cGMP from GTP. NO has numerous beneficial effects on the cardiovascular, renal and metabolic systems, mainly through cGMP-dependent mechanisms, although cGMP-independent mechanisms have also been reported. These mechanisms include modulation of protein function and immune activity, reduction of angiotensin II (ANGII) signalling, modulation of oxidative stress and sympathetic nerve activity, and regulation of mitochondrial function. In the pathogenesis of cardiovascular disease and CKD, reduced NO bioactivity is associated with organ dysfunction. Reduced NO bioactivity can be attributed to several factors, including reduced NOS expression, limited substrate availability, uncoupling of NOS (a phenomenon in which the normal function of NOS is disrupted, resulting in the production of ROS such as superoxide and H₂O₂ instead of NO), increased levels of endogenous NOS inhibitors such as ADMA, and impaired signalling under conditions of oxidative stress^{15,81}. In the kidney, NO is critically involved in the autoregulation and modulation of tubular transport, which may be important in the development and progression of hypertension, CKD, IRI and cardiovascular disease¹⁵.

Endothelial NOS. Endothelium-derived NO, produced by eNOS, has a critical role in regulating blood flow and maintaining endothelial integrity. Mice that do not express *eNos* show symptoms similar to those of the metabolic syndrome and develop severe kidney disease^{76,82,83}. Of interest, the metabolic syndrome of *eNos*-deficient mice can be reversed by dietary nitrate supplementation, which activates the nitrate–nitrite–NO pathway⁸⁴. The uncoupling of eNOS and activation of NOX are major contributors to the production of ROS¹⁰, and have been linked to the initiation and progression of DKD^{85,86}. Furthermore, our studies suggest a possible link between impaired endothelium-derived NO activity, the production of ROS resulting from eNOS uncoupling, and endothelial dysfunction in models of DKD^{10,87,88}.

Neuronal NOS. NOS1 (nNOS) and NOX2 are the main regulators of tubuloglomerular feedback (TGF) – a tightly coordinated mechanism by which the kidney balances sodium excretion. Scavenging by NOX2-derived ROS attenuates the bioavailability and signalling of NOS1-derived NO⁸⁹. In situations characterized by oxidative stress, TGF activity is increased. Conversely, conditions characterized by increased NO production can inhibit the TGF response^{89–91}.

The β -splice variant of NOS1 that is expressed in macula densa cells (NOS1 β) is particularly important in NO production⁹². The expression and activity of NOS1 β is altered by factors such as high salt intake, hypertension and diabetes^{89,92-94}. NOS1 β -mediated regulation of TGF and renal haemodynamic responses has also been shown to have an important role in pregnancy⁹⁵.

The role of ROS in inflammation Uncoupling of NOS and ROS-NO imbalance

Uncoupling of eNOS results in the generation of ROS rather than NO, contributing to vascular endothelial dysfunction^{96,97} (Fig. 3).

Fig. 3 | Uncoupling of eNOS. a, Endothelial nitric oxide (NO) synthase (eNOS) is considered to be coupled when it exists as a dimer, which produces abundant levels of NO and a small amount of reactive oxygen species (ROS). Tetrahydrobiopterin (BH₄) binds to the oxygenase domain of eNOS to stabilize the dimer, whereas calmodulin (CaM) regulates the flow of electrons from NADPH in the reductase domain to the haem in the oxygenase domain. Zinc ions bound to eNOS are also required for dimer formation and stability. NO diffuses into vascular smooth muscle cells (VSMCs) where it binds to soluble guanylyl cyclase (sGC) and initiates the synthesis of 3,5-cGMP. This in turn activates cGMP-dependent protein kinase G (PKG), which promotes VSMC relaxation, resulting in vasodilation. b, The absence of BH4, the oxidation of BH₄ to dihydrobiopterin (BH₂), or low levels of heat shock protein 90 can induce uncoupling of the eNOS dimer to form two monomers, which are less efficient at producing NO and generate large amounts of ROS. In addition, peroxynitrite, produced by the reaction of superoxide with NO, oxidizes BH₄. This process leads to a reduction in the cellular ratio of BH4 to BH2, exacerbating eNOS uncoupling and perpetuating a deleterious cycle of oxidative stress. FAD, flavin adenine dinucleotide; FMN. flavin mononucleotide.

Several factors can trigger eNOS uncoupling, including: depletion of the critical eNOS cofactor tetrahydrobiopterin (BH_4) as a consequence of oxidative stress; deficiency of the eNOS substrate L-arginine; accumulation of its analogue asymmetric dimethylarginine (ADMA); and eNOS S-glutathionylation⁹⁸.

NOS has both oxidizing and reducing properties and requires BH₄ to function as a NOS. In the context of low L-arginine or BH₄ levels, NOS cannot dimerize and becomes unstable, which results in the donation of electrons to oxygen instead of L-arginine, and leads to the formation of ROS⁵. Dihydrobiopterin (BH₂) is the oxidized form of BH₄; it is produced in response to cardiovascular disease-associated oxidative stress^{99,100}, resulting in a decrease in the ratio of BH₄ to BH₂. A reduction in BH₄ levels, along with a decrease in the BH₄ to BH₂ ratio, is believed to be a major cause of eNOS uncoupling, and has been linked to endothe-lial dysfunction in numerous disease models and disease⁹⁸, including coronary artery disease¹⁰¹, peripheral artery disease¹⁰², diabetes¹⁰³, hypertension¹⁰⁴, hypercholesterolaemia¹⁰⁵ and heart failure with preserved ejection fraction¹⁰⁶.

Evidence suggests that BH₄ treatment can prevent eNOS uncoupling in animal models¹⁰⁷⁻¹⁰⁹ and improves endothelial function in humans^{104,105,110,111}; however, the consequences of this effect are unclear. All of the above-mentioned human studies were conducted with intravenously administered BH₄. Studies that used orally administered BH₄ found improved endothelial dysfunction in patients with dyslipidaemia¹¹², hypertension¹¹³ and rheumatoid arthritis¹¹⁴, but no improvement in patients with coronary artery disease in whom it instead increased BH₂ levels¹¹⁵. These different outcomes may reflect the fact that BH₄ is unstable and easily oxidized. Thus, coadministration of BH₄ with antioxidants may be required to restore the BH₄ to BH₂ ratio in patients with high levels of oxidative stress¹¹⁶. Furthermore, a study of vascular dysfunction in a model of subarachnoid haemorrhage found that BH_4 levels are dependent of the rate of BH_2 reduction by dihydrofolate reductase, and correlate negatively with levels of NOX4 (ref. 117).

We use an in situ visualization method in which administration of diaminorhodamine and dichlorofluorescein diacetate enables the detection of NO and ROS, respectively, in perfused kidneys by confocal laser microscopy. Arginine and calcium are also administered to activate eNOS. This technique allows the simultaneous analysis of changes in NO and ROS in disease models¹⁰. In rats with streptozotocin (STZ)-induced diabetes, for example, we found that O_2 is produced not only by NOX but also by NOS as a consequence of eNOS uncoupling. Administration of BH₄ improved the imbalance between ROS and NOS, and decreased urinary albumin excretion^{10,87}. Levels of the enzyme that is responsible for BH₄ synthesis – guanosine triphosphate cyclohydrolase I (GTPCH I) – are often reduced in diabetes. We have shown that maintaining levels of GTPCH I in the glomerular endothelium can ameliorate kidney disease in diabetic Akita mice⁸⁸.

L-Arginine supplementation is another potential approach to preventing eNOS uncoupling and increasing NO synthesis in the endothelium. It was once considered a promising therapeutic approach to preventing cardiovascular disease^{98,118,119}; however, the results of experimental and clinical studies have been mixed⁹⁸. Lastly, S-glutathionylation of eNOS in endothelial cells is also linked to defects in vasodilation as a consequence of reduced NO production and increased ROS generation¹²⁰. This modification can be reversed by thiol-specific reducing agents to restore protein function¹²¹. Deglutathionylation can be achieved by glutaredoxin 1 and TRX, which have

been shown to improve endothelial function and prevent myocardial infarction^{122,123}; however, further research is needed in this area⁹⁸.

Keap1-Nrf2 system

Various mechanisms are used to produce the enzymes required to respond to changes in the environment. The HIF pathway and the Keap1-Nrf2 system are two such mechanisms – both of which may represent therapeutic targets in the treatment of kidney disease^{124,125} (Fig. 4a). NRF2 is a basic leucine zipper-type transcription factor that maintains homeostasis in the body mainly in response to oxidative stress. In its inactive state, NRF2 localizes to the cytoplasm and is bound to Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (KEAP1). KEAP1 is a highly sensitive sensor of electrophilic materials, which induce the ubiquitination and subsequent degradation of NRF2 by a cullin-type E3 ubiquitin ligase. This degradation process maintains constant, low concentrations of NRF2. However, oxidative stress modifies a cystine residue in Keap1, which alters its structure and enables NRF2 to escape degradation. NRF2 subsequently enters the nucleus¹²⁶, where it binds to small musculo-aponeurotic fibrosarcoma oncogene homologue and antioxidant responsive elements in the promoter region of antioxidant genes to induce the expression of proteins such as glutathione synthase and HO1, which are essential for the protection of cells and organs from oxidative stress124.

Studies in animal models with genetic modification of Keap1-Nrf2 components have consistently shown that NRF2 attenuates oxidative

stress caused by pathological conditions, including IRI, UUO, nephrotoxins and diabetes, and slows the progression of associated kidney diseases¹²⁷⁻¹²⁹. This research supports the notion that oxidative stress is a key factor in both the onset and progression of kidney disease and highlights the importance of oxidative stress accumulation as a common pathway in various models of kidney disease¹²⁷⁻¹²⁹. However, decreased NRF2 activity and a reduction in its target gene products, including antioxidant enzymes, the key enzymes responsible for glutathione synthesis, and the major detoxifying enzyme NQO1, have been observed in models of CKD, including rats with five-sixths nephrectomy-induced CKD, despite the presence of oxidative stress and inflammation in the kidney^{8,130}. Reduced Nrf2 activity was also observed in the kidneys of rats that spontaneously developed focal glomerulosclerosis, leading to kidney failure¹³¹. The observed decrease in Nrf2 activity across various CKD models suggests that inactivation of Nrf2 mediates the onset and progression of CKD across a variety of disease aetiologies8.

FOXO proteins

The FOXO family of transcription factors maintains cellular and organismal homeostasis in response to various stressors including oxidants¹²⁴ (Fig. 4b). The transcriptional activity of FOXO is classically regulated by its serine/threonine kinase AKT-mediated phosphorylation, which induces its translocation from the nucleus to the cytoplasm¹³²; however, FOXO can also be subject to direct redox regulation. The function of FOXO is further regulated by a variety of factors. FOXO can dimerize

Fig. 4 | **Role of ROS in cell signalling. a**, Reactive oxygen species (ROS) can induce the formation of intramolecular disulfide bonds in Kelch-like ECH-associated protein 1 (KEAP-1), which enables NF-E2-related factor 2 (NRF2) to escape proteolytic degradation and translocate into the nucleus, where it forms a heterodimer with small Maf protein (sMaf) factor, which binds to the antioxidant response element (ARE) to activate the transcription of target genes involved in the antioxidant response. **b**, Under oxidative stress, forkhead box O (FOXO) forms intermolecular disulfide bonds with the TNPO transporter to facilitate its nuclear transfer and the transcription of genes involved in the antioxidant response. Alternatively, FOXO interacts with the acetyltransferase p300 to acetylate it. This reduces the DNA-binding capacity of FOXO. **c**, Under physiological conditions, nuclear factor-κB (NF-κB) is kept inactive in the cytoplasm by binding to inhibitor of κB (I-κB). During oxidative stress, H_2O_2 activates I- κ B kinase (IKK), which leads to the phosphorylation and degradation of I- κ B, and the release of NF- κ B. NF- κ B can then translocate to the nucleus where it activates the transcription of genes involved in inflammatory pathways. In addition, H_2O_2 can also oxidize NF- κ B – a modification that can be reversed by the thioredoxin (TRX) in the nucleus to restore DNA binding capacity. **d**, Prolyl hydroxylase domain-containing protein 2 (PHD2) acts as a redox sensor and can hydroxylate and inactivate the transcription factor, hypoxia-inducible factor 1 α (HIF1 α). Increased ROS production leads to the formation of intramolecular disulfide bonds and the formation of a PHD2 homodimer, resulting in HIF1 α stabilization and translocation into the nucleus where it interacts with cofactors such as p300 and the Pol II complex to activate the hypoxic response element (HRE) of hypoxia-responsive genes.

with the TNPO transporter to facilitate its nuclear translocation and enhance FOXO activity^{124,133}. Additionally, ROS have been shown to induce the formation of a cysteine-thiol-disulfide-dependent complex between FOXO and p300/CBP acetyltransferase. Acetylation of FOXO by the acetyltransferase p300 reduces its DNA binding and transcriptional capacity. This process is regulated by the TRX system of disulfide reductases¹³⁴.

FOXO1 is highly expressed in insulin-responsive tissues such as the liver, adipose tissue, skeletal muscle and pancreas, and is thought to be a key regulator of insulin signalling and glucose homeostasis because it coordinates transcriptional cascades that regulate glucose metabolism. Some studies have suggested that genetic variations in *FOXO1* may increase the risk of DKD¹³⁵.

NF-ĸB pathway

NF-KB is a widely expressed transcription factor that controls the signal-induced expression of genes involved in a variety of biological processes, such as the immune response, inflammation, cell growth and survival¹²⁴ (Fig. 4c). Under unstimulated conditions, NF-KB localizes to the cytoplasm where it is bound to inhibitory proteins (members of the I-KB family). Activation of the I-KB kinase complex by ligands that activate Toll-like receptors (TLRs), such as TNF, IL-1ß and lipopolysaccharide, induces the phosphorylation of inhibitory proteins, the degradation of I-KBa and the release of NF-KB, which translocates to the nucleus. In the nucleus, activated NF-KB regulates the expression of genes that encode inflammatory mediators, highlighting the interplay between redox sensitivity and inflammation¹³⁶. Sustained activation of NF-ĸB has been linked to chronic inflammation in CKD^{137,138}. In addition, dysfunctional Nrf2 activity may contribute to the development and exacerbation of renal inflammation in CKD by facilitating the accumulation of hydroperoxides and lipoperoxides in kidney tissue. These factors are powerful activators of NF-KB, establishing a connection between the two signalling pathways^{8,139}.

The HIF pathway

HIF is a member of the basic helix-loop-helix per-ARNT-sim homology (PAS) family of transcription factors. HIFs consist of an α -chain that undergoes oxygen-dependent degradation and a β -chain that is constantly expressed¹²⁴ (Fig. 4d). HIF1 is the most abundant HIF isoform and regulates the global response to hypoxia, whereas HIF2 is more localized and involved in the transcription of specific genes such as erythropoietin (EPO). In the hypoxic kidney, HIF1 α is expressed in tubular epithelial cells, and HIF2 α is expressed mainly in endothelial and interstitial cells¹⁴⁰. HIF activation has a protective effect in models of AKI, with findings from several studies indicating that small-molecule inhibitors of prolyl hydroxylase (PHD) that stabilize HIF can reduce tubulointerstitial injury^{141,142}. In a rat model of renal transplantation, pre-administration of a PHD inhibitor to the donor rat prevented graft injury and improved graft survival¹⁴¹⁻¹⁴³. HIF activation after ischaemic kidney injury is associated with a reduction in tubular cell apoptosis, inflammatory cell infiltration and peritubular capillary loss^{143,144}. Moreover, systemic deletion of Vhl, which leads to activation of HIF1 and HIF2, also confers renal protection in AKI models¹⁴⁵. Conversely, mice with heterozygous knockdown of Hif1a and Hif2a are more susceptible to IRI than wild-type littermate controls¹⁴⁶. Of interest, systemic knockdown of Hif2a alone exacerbates tubulointerstitial injury whereas restoration of *Hif2a* in endothelial cells ameliorated IRI-induced kidney damage¹⁴⁷. The protective effects of PHD inhibitors have been linked to HIF-induced upregulation in glycogen synthesis, which contributes to cell survival under conditions of oxygen and glucose deprivation¹⁴⁸. However, it is important to note that in studies to date, PHD inhibitors administered prophylactically improved tubulointerstitial injury, but administration after the onset of IRI did not^{149,150}, suggesting that the beneficial effects of HIF activation in the context of AKI therapy may be time-dependent^{144,150}.

The effects of HIF have also been studied in models of diabetes. In a model of STZ-induced type I diabetes, HIF1 expression was enhanced by antioxidant treatment, suggesting that oxidative stress may attenuate HIF expression¹⁵¹. This hypothesis is supported by a study which found that the induction of the HIF target gene, *VEGF*, in response to hypoxia was attenuated in adipose-derived stem cells obtained from patients on dialysis but not in cells obtained from patients without CKD¹⁵².

In 2019, Japan was the first country to approve the use of a PHD inhibitor for the treatment of renal anaemia in patients on dialysis. PHD inhibitors have since been approved for use in patients with non-dialysis-dependent CKD. Together, these findings suggest that dysregulation of the HIF response in CKD and enhanced HIF-mediated signalling may modulate the pathogenesis of CKD.

ROS and intracellular organelle function ER stress and peroxisomes

The ER serves as a site for the folding and post-translational modification of most membrane and secretory proteins. Indeed, approximately 30% of all newly synthesized proteins undergo some form of modification within the ER, leading to their maturation. ER stress can occur when proteins fail to fold properly within the ER lumen, often as a consequence of changes in the cellular environment, which results in the accumulation of defective proteins. ER stress is associated with an increase in protein disulfide bonds, which stimulates ROS production within the ER¹⁵³, but can also promote ROS production within mitochondria by disrupting Ca²⁺ homeostasis between the ER and cytosol. Thus, oxidative stress and ER stress contribute to a detrimental cvcle¹⁵⁴. The accumulation of denatured or misfolded proteins in the ER is detected by sensor proteins such as PERK. IRE1 and ATF6. and activates a response called the unfolded protein response (UPR). Several studies have demonstrated a relationship between activation of the UPR and kidney disease¹⁵⁵. One study identified a small-molecule compound that targets the UPR as a potential treatment for mucin1kidney disease, a rare toxic proteinopathy¹⁵⁶, suggesting that similar approaches could have therapeutic implications for other kidney diseases.

Peroxisomes have a role in detoxifying peroxisomal and intracellular ROS through the activity of enzymes such as SOD, GPX and CAT. One study revealed that mitosis-specific phosphorylation of Ser232 on the peroxisomal membrane protein, PEX14, during cell cycling acts as a defence against ROS by increasing cytoplasmic levels of the antioxidant enzyme, CAT¹⁵⁷. This finding suggests that the phosphorylation of PEX14 helps maintain cellular homeostasis in cooperation with other organelles by, for example, protecting DNA from ROS through the production of CAT during mitosis – a phase in which the nuclear membrane is lost¹⁵⁷. It has also been reported that oxidative stress induces the phosphorylation of PEX14 and selectively inhibits CAT transport. In other words, the phosphorylation of PEX14 is important for cellular resistance to oxidative stress¹⁵⁸.

Like mitochondria, peroxisomes are vulnerable to functional and structural damage during IRI¹⁵⁹. Approximately 90% of the CAT activity in cells is concentrated in peroxisomes. The reduction in CAT activity during renal ischaemia is primarily due to enzyme inactivation.

Ischaemia-induced H_2O_2 generation and intracellular acidosis promote the formation of CAT into enzymatically inactive complexes^{159,160}. Prolonged ischaemia followed by reperfusion causes structural changes in peroxisomes, ultimately leading to the release of CAT into the cytoplasm and overall organelle deterioration. The suppression of CAT activity during reperfusion is due to decreased proteolysis and synthesis of the CAT protein¹⁵⁹.

Mitochondria

Physiological role of mitochondrial ROS. mtROS were once thought to be cytotoxic and have no physiological function; however, we now know that mtROS are essential for various cellular processes²². For example, mtROS may be important for HIF stabilization under hypoxic conditions²³. Hypoxia alters the microtubule-dependent transport of mitochondria, leading to an accumulation of mitochondria in the perinuclear region¹⁶¹. The resulting increase in nuclear ROS enhances the expression of hypoxia-sensitive genes, such as *VEGF*, by oxidizing the hypoxia response elements within their promoters¹⁶². Beyond their role in the hypoxic response, mtROS also have physiological roles in differentiation, autophagy and immune cell activation²².

ROS production and mitochondrial dysfunction. mtDNA is more prone to damage from ROS than nuclear DNA. Several reasons probably underlie the higher susceptibility of mtDNA to oxidative damage, including the fact that mitochondria generate ROS, the absence of protective proteins such as histones, and the absence of effective mtDNA repair mechanisms^{163,164}. Similar to nuclear DNA, mtDNA can undergo various types of damage, including single-strand and double-strand breaks, the formation of DNA-protein crosslinks, interstrand crosslinks and intrastrand crosslinks. Such damage can impair mitochondrial function, including the ability to synthesize ATP and carry out metabolic processes such as fatty acid oxidation, the tricarboxylic acid cycle, the urea cycle, amino acid metabolism and haem synthesis¹⁶⁵. Furthermore, oxidative damage caused by ROS can increase the likelihood that mitochondria will release cytochrome *c* and thereby activate the apoptotic cascade¹⁶⁶.

Mitochondrial damage is a common feature of kidney diseases. For example, ROS production is increased immediately following renal IRI, which causes direct oxidative damage to mitochondrial proteins and lipids, leading to impaired ETC function and increased mitochondrial membrane permeability, which further induces mitochondria disruption¹⁶⁷. mtROS also activate inflammatory signals such as those involving TLRs and the NLRP3 inflammasome, which exacerbate kidney injury¹⁶⁸.

Regulation of cellular energy metabolism is key to mitigating the cellular damage caused by ROS. For example, shifting ATP production from OXPHOS in mitochondria to glycolysis may reduce IRI-induced organ damage¹⁶⁹. Moreover, we have reported that the antihistamine, meclizine, can reduce IRI and hypoxia-induced ROS by inhibiting the Kennedy pathway of phospholipid biosynthesis¹⁷⁰. The rapid removal of damaged or dysfunctional mitochondria is also crucial to maintain cellular homeostasis and viability. Mitophagy, a selective autophagic process that removes mitochondria, is activated in renal proximal tubular cells following IRI, and is critical for maintaining mitochondrial quality control, promoting tubular cell survival and preserving renal function during AKI¹⁷¹.

The overproduction of ROS as a consequence of mitochondrial dysfunction has also been linked to DKD and CKD. Mice with a point mutation in mtDNA that causes ROS overproduction develop diabetes

and lymphoma¹⁷², and increased mtROS production and mitochondrial dysfunction has been reported in patients with CKD, particularly in those with DKD⁸⁶. Mechanistically, glucose-induced ROS production contributes to podocyte apoptosis and depletion^{173,174}. However, it is important to note that the dogma that high glucose levels lead to increased mitochondrial superoxide production has been challenged by a study in mice with STZ-induced diabetes, which demonstrated that the production of mtROS in the diabetic environment is counter-intuitively reduced¹⁷⁵. Similar to excess mtROS, which can harm cells in various ways, insufficient levels of ROS can also disrupt signalling pathways and impair the function of redox-dependent proteins. Therefore, normal cellular function relies on an appropriate balance of the production and scavenging of ROS.

Mitochondrial ROS and cell death. Nephron loss in CKD is caused not only by damage to the glomerulus, particularly podocytes but also by tubular cell death, which can induce morphological changes and irreversible kidney dysfunction. Cell death is typically classified as either apoptotic or necrotic. Apoptosis is a non-immunogenic process that eliminates unnecessary cells. Necrosis was once considered to be an unregulated form of cell death that was caused by oxidative or other forms of chemical stress; however, diverse, regulated forms of necrosis are now known to exist¹⁷⁶.

Ferroptosis is one such form of regulated necrosis that is caused by the accumulation of divalent iron (Fe²⁺)-dependent ROS and the enhanced production of lipid peroxides, which promotes the accumulation of oxidized polyunsaturated fatty acids in membrane phospholipids¹⁷⁷. Ferroptosis contributes to tubular cell death during AKI, as demonstrated by increased levels of tubular cell death in mice lacking the ferroptosis inhibitor, *Gpx4*, and attenuated tubular damage following administration of the inhibitor of ferroptosis, ferrostatin 1 (refs. 178,179). IL-4-induced 1 (IL-4i1), an amino acid oxidase that is secreted by immune cells, and the enzyme FSP1, which converts vitamin K from its oxidized form to its reduced form, also prevent ferroptosis by preventing the oxidation of intracellular lipids^{180,181}. Several drugs that are already in clinical use may inhibit ferroptosis by acting as peroxyl radical scavengers, and have demonstrated protective effects in models of AKI¹⁸².

Necroptosis is another form of regulated necrosis that can induce inflammation in the surrounding tissue secondary to rupture of the cell membrane. The necroptotic pathway is initiated by the cytosolic necrosome complex, which comprises receptor-interacting protein kinase 1 (RIP1), RIP3 and mixed lineage kinase domain-like (MLKL) protein. Activation of this complex induces oligomerization of MLKL and its relocation to the cell membrane, where it forms pores¹⁸³. mtROS have been identified as drivers of a shift from apoptosis to necroptosis under conditions of hyperglycaemia¹⁸⁴. Necroptosis is also an important form of cell death in kidney disease. *Mlkl* is the most prominently expressed tubular epithelial cell gene in models of AKI, and mice with deletion of *Ripk3* and/or *Mlkl* are protected against IRI-induced kidney injury¹⁸⁵. RIPK3 and MLKL expression in renal biopsy tissue may be useful for AKI risk stratification¹⁸⁵.

mtDNA and the innate immune system. mtDNA has immunostimulatory properties and can directly activate pattern-recognition receptors (PRRs) in the innate immune system to elicit an inflammatory response¹⁸⁶. For example, the cytosolic release of mtDNA, induced by mtROS and NLRP3 activation, can stimulate the secretion of IL-1 β and IL-18 from macrophages^{187,188}. The PRR, AIM2, is also involved in the activation of

caspase 1 downstream of mtDNA¹⁸⁷. Inflammasome activation in conjunction with mtDNA release has been implicated in several pathologies, including atherosclerosis, age-related macular degeneration, mevalonic acid kinase deficiency and certain bacterial infections¹⁸⁹. Lastly, the cGAS–STING pathway is a key mechanism for detecting cytosolic DNA and activating the innate immune response. DNA from cells exposed to oxidative stress triggers STING activation and enhances immune recognition. Released mtDNA also activates cGAS–STING signalling, and its inhibition can ameliorate models of kidney disease^{190,191}.

Organelle crosstalk

Although organelles, such as mitochondria and the ER, individually contribute to the production of ROS, it is important to consider that crosstalk exists between them. The interface between mitochondria and ER is called the mitochondria-associated ER membrane (MAM) and contributes to a variety of cell functions such as lipid metabolism, calcium signalling, ER stress, mitochondrial function, apoptosis and autophagy¹⁹². Abnormalities in MAM structure or function have been implicated in the development and pathogenesis of several diseases, including DKD. For example, kidneys of patients with DKD have reduced expression of the antioxidant, DsbA-L (disulfide-bond-A oxidoreductase-like protein), and demonstrate impaired MAM maintenance¹⁹³. Overexpression of DsbA-L restores MAM integrity and attenuates glucose-induced tubular damage¹⁹³. In addition, mice that lack phosphofurin acidic cluster sorting protein 2 - a protein that normally localizes to the area of contact between the mitochondria and the ER - rapidly develop proteinuria under diabetic conditions, associated with the destruction of MAM regions, ER stress, mitochondrial dysfunction, apoptosis and worsening fibrosis¹⁹⁴.

Chronic kidney diseases

ROS can contribute to kidney disease through a variety of mechanisms. They can directly damage kidney cells, leading to impaired kidney function, inflammation and fibrosis. They can also activate signalling pathways and transcription factors that exacerbate these processes (Fig. 5). Diabetes, hypertension and the metabolic syndrome are all associated with renal oxidative stress and the uncoupling of NOS, resulting in an imbalance between ROS and NO^{10,12,87}. This imbalance can lead to glomerular hypertension, endothelial and epithelial cell damage and albuminuria.

The tubulointerstitium is also vulnerable to injury; AKI which can result from tubulointerstitial damage increases the risk of subsequent CKD^{176,195}. In the tubulointerstitial region, injury to endothelial cells of the peritubular capillaries can also cause damage to tubular epithelial cells, at least in part, through imbalances in the ratio of ROS to NO, which activates inflammatory and fibrotic signalling pathways such as those that involve NF- κ B, inflammasomes and Wnt- β -catenin^{196,197} (Fig. 5b).

Targeting ROS pathways

Findings from animal studies suggest that targeting ROS could represent a promising approach for the treatment of cardiovascular and kidney disease^{24,198-201}. However, it is important to note that although antioxidants can neutralize free radicals, they do not affect H_2O_2 , which is a key player in many pathophysiological processes⁵. Moreover, and as outlined in this Review, ROS have essential roles in maintaining physiological functions, and thus complete elimination of ROS may disrupt cellular homeostasis and exacerbate disease progression⁵. Despite the potential risks, some drugs have demonstrated promising results in reducing oxidative stress in clinical settings (Table 2).

Renin-angiotensin-aldosterone system blockers

The renin-angiotensin-aldosterone system (RAAS) has a key role in the regulation of blood pressure and cardiovascular function. In addition to elevating blood pressure, ANGII, a major component of the RAAS, induces inflammatory responses by stimulating the formation of ROS through the activation of NAD(P)H oxidase. ROS subsequently promote cell growth, the expression of pro-inflammatory genes, and the production of extracellular matrix proteins²⁰². Clinical trials have shown that RAAS blockers reduce urinary protein levels and demonstrated renoprotective effects through blood pressure-dependent and blood pressure-independent mechanisms²⁰³⁻²⁰⁵, including through the attenuation of pro-inflammatory and profibrotic pathways²⁰⁶. Studies in genetic models of kidney disease support the notion that the tissue benefits of RAAS blockade go beyond blood pressure control alone, and include improvements in proteinuria, attenuation of podocyte effacement, and reductions in oxidative stress and perivascular fibrosis.

SGLT2 inhibitors

Sodium–glucose cotransporter 2 (SGLT2) inhibitors have gained widespread recognition for their renoprotective effects beyond glucose control. The mechanisms underlying these effects are not clear, but a number of possibilities exist. For example, the inhibition of glucose uptake by proximal tubular cells may reduce oxidative stress²⁰⁷. This reduction in oxidative stress may be in part mediated by a parallel induction of uricosuria, through either direct or indirect effects of SGLT2 inhibitors on URAT1 (refs. 208,209). Alternatively, SGLT2 inhibitors may target the molecular pathways responsible for changes in Ca²⁺ signalling and oxidative stress associated with inflammation^{210,211}. SGLT2 inhibitors also reportedly improve endothelial function and aortic stiffness²¹². Moreover, SGLT2 inhibitors may directly vasodilate blood vessels and increase the production of NO²¹², which could contribute to organ protection by improving endothelial function^{209,213}.

The NO-sGC-cGMP pathway

As described earlier, total NO production is decreased in kidney disease due to impaired endothelial function and an increase in the endogenous eNOS inhibitor. ADMA. A randomized controlled trial in patients undergoing multiple valve replacement for rheumatic heart disease with no additional risk factors for endothelial dysfunction demonstrated that the administration of NO led to a decrease in stage 3 CKD up to 1 year following surgery²¹⁴. Whether the kidney-protective effects of NO gas are similar or superior in patients with endothelial dysfunction is unclear. A phase III clinical trial (NCT02836899) will investigate the effectiveness of inhaled NO as a treatment for AKI in patients undergoing cardiac surgery $^{\rm 215\mathchar`-217}$. The efficacy of NO is limited in patients with heart failure due to excessive oxidative stress and inflammation-induced damage to the vascular endothelium. The sGC stimulator, vericiguat, increases the production of cGMP, which may alleviate heart failure symptoms. In the VICTORIA trial in 5,050 patients with heart failure with reduced ejection fraction, vericiguat treatment resulted in a 10% reduction in the primary end point of cardiovascular death or first hospitalization for heart failure¹⁹⁸. Such agents are expected to have similar protective effects in the kidney, by increasing renal blood flow and improving GFR, but also through direct attenuation of CKD progression^{10,87,88}. Indeed, sGC activators have demonstrated beneficial effects on kidney function in preclinical models of kidney disease, which importantly are not solely dependent on blood pressure reduction^{15,218}. Mechanistic studies suggest that the

Fig. 5 | **Oxidative stress in the pathogenesis and progression of CKD. a**, Diabetes mellitus, hypertension, the metabolic syndrome and ageing are associated with an imbalance in reactive oxygen species (ROS) and NO, which can contribute to glomerular hypertension, endothelial damage and the development of albuminuria. Progression of glomerular damage leads to a decrease in oxygen supply to the tubulointerstitium, which promotes renal fibrosis. The pathophysiological mechanisms that drive this process, including activation of the renin–angiotensin–aldosterone system (RAAS), decreased glomerular filtration rate, abnormal fluid and electrolyte balance, increased blood pressure, increased renal sympathetic nerve activity and inflammatory processes, have all linked to some extent to an imbalance between NO and ROS. Damage to the tubulointerstitium can stimulate the production of ROS, which may exacerbate endothelial cell injury, capillary reduction, chronic inflammation and the induction of a hypoxic environment. These factors can accelerate the progression of chronic kidney disease (CKD). **b**, Damage to endothelial cells in the glomerulus and peritubular capillary can induce injury in adjacent epithelial cells through imbalances in ROS/NO, which can lead to the activation of inflammatory and fibrotic pathways involving nuclear factor- κ B (NF- κ B), inflammasome activation and Wnt- β -catenin, resulting in kidney fibrosis. AKD, acute kidney disease; AKI, acute kidney injury; eNOS, endothelial nitric oxide synthase; NOX, NADPH oxidase; SASP, senescence-associated secretory phenotype.

antifibrotic effects of sGC stimulators and activators are mediated by cGMP, which inhibits the TGF β -phospho-SMAD3 signalling pathway¹⁵. A phase II trial of the sGC stimulator, praliciguat, in patients with type 2 diabetes and albuminuria already receiving a RAS blocker did not meet its primary end point of a reduction in albuminuria. However, exploratory end points, including reductions in metabolic variables such as blood pressure, haemoglobin A1c, and cholesterol, favoured praliciguat treatment²¹⁹.

Pyridoxamine dihydrochloride

Clinical trials are also underway to study the effects of antioxidants in patients with kidney disease. Pyridoxamine dihydrochloride (pyridoline), a derivative of vitamin B_6 , is considered a potential treatment option due to its ability to scavenge ROS and inhibit the formation of advanced glycation end products²²⁰. However, a double-blind, randomized, placebo-controlled study in patients with type 2 diabetes and proteinuric kidney disease failed to demonstrate an effect of pyridoline

Table 2 | Clinical trials targeting ROS pathways in kidney disease

Disease	Trial phase	Inclusion criteria	Number of patients enrolled	Drug	Status	Result	Clinical trial number or reference
AKI and AKI to CKD	I/II	Patients aged ≥18 years undergoing elective cardiac or aortic surgery with cardiopulmonary bypass; stable preoperative renal function, without dialysis	217	NO	Completed	Decreased incidence of AKI, and transition to stage 3 CKD	Lei et al. (2018) ²¹⁴
AKI and AKI to CKD	III	Patients aged ≥18 years undergoing elective cardiac or aortic surgery with cardiopulmonary bypass >90 min; stable preoperative renal function and without RRT; clinical evidence of endothelial dysfunction	250	NO	Active, not recruiting	No study results posted	NCT02836899
DKD in T2DM	II	Patients age 25–75 years with eGFR 30–75 ml/min/1.73 m² and UACR 200–5,000 mg/g	156	IW-1973 (sGC stimulator)	Completed	Treatment for 12 weeks did not significantly reduce albuminuria compared with placebo in the primary efficacy analysis	Hanrahan et al. (2020) ²¹⁹
DKD in T2DM	II	Patients aged ≥25 years with sCr 1.3– 3.3 mg/dl (women) or 1.5–3.5 mg/dl (men), and a 24-h urine collection PCR ≥1,200 mg/g while on an ACEI or an ARB	317	Pyridoxamine dihydrochloride	Completed	No study results posted	NCT00734253
DKD in T2DM	III	Patients aged ≥18 years with sCr ≥1.25 mg/dl (women) or ≥1.45 mg/ dl (men) and a 24-h urine collection PCR ≥1,200 mg/g	328	Pyridorin (pyridoxamine dihydrochloride)	Terminated	No study results posted	NCT02156843
DKD in T2DM	II	Patients aged 18–80 years UACR 300–3,500mg/g; eGFR ≥30ml/ min/1.73m ² , receiving an ACEI or an ARB	200	GKT137831 (a Nox1/4 inhibitor)	Completed	No study results posted	NCT02010242
DKD in T1DM	II	Patients aged 18–70 years with eGFR ≥40 ml/min/1.73 m² and UACR ≥2.5 mg/mmol (men) or ≥3.5 mg/ mmol (women) receiving an ACEI or an ARB	92	GKT137831 (a Nox1/4 inhibitor)	Completed	No study results posted	ACTRN12617001187336
T2DM and CKD	II	Patients aged 18–80 years with UACR 200–3,000 mg/g and eGFR between 30 and 90 ml/min/1.73 m ² receiving an ACEI or ARB	140	APX-115 (a pan NOX inhibitor)	Completed	No study results posted	NCT04534439
Contrast- induced AKI	II	Patients aged ≥18 years and eGFR >30 ml/min/1.73 m² and <90 ml/ min/1.73 m²	280	APX-115 (a pan NOX inhibitor)	Not yet recruiting	No study results posted	NCT05758896
DKD in T2DM	II	Patients aged 18–75 years with stage 3a CKD (eGFR 45 to <60 ml/ min, UACR ≥600 mg/g), stage 3b CKD (eGFR 30 to <45 ml/min, UACR ≥300 mg/g) or stage 4 CKD (eGFR 15 to <30 ml/min, UACR ≥150 mg/g) receiving an ACEI or an ARB	334	Selonsertib	Completed	Selonsertib may delay the progression of DKD	NCT02177786
DKD in T2DM	II	Patients aged 18–80 years with eGFR \geq 45 to <60 ml/min/1.73 m ² and UACR 600–5,000 mg/g, eGFR \geq 30 to <45 ml/min/1.73 m ² and UACR 300–5, 000 mg/g, or eGFR \geq 20 to <30 mL/min/1.73 m ² and UACR \geq 150–5,000 mg/g while receiving an ACEI or ARB	384	Selonsertib	Completed	Selonsertib may delay the progression of DKD	NCT04026165

ACEI, angiotensin-converting enzyme inhibitor; AKI, acute kidney injury; ARB, angiotensin receptor blocker; CKD, chronic kidney disease; DKD, diabetic kidney disease; eGFR, estimated glomerular filtration rate; NO, nitric oxide; NOX, NADPH oxidase; PCR, protein to creatinine ratio; RRT, renal replacement therapy; sCr, serum creatinine (multiply by 88.4 to obtain value in micromoles per litre); sGC, soluble guanylyl cyclase; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; UACR, urine albumin to creatinine ratio.

on serum creatinine levels. In addition, the phase III PIONEER study (NCT02156843) of pyridolide in patients with DKD was conducted. However, the results have not yet been published²²¹.

NOX1/4 inhibitors

Clinical trials are also underway to assess inhibitors of the NOX family of ROS-producing enzymes. The NOX1/4 inhibitor, GKT137831, has shown promising renoprotective effects in multiple animal models of CKD²²², leading to the initiation of clinical trials. A multicentre, randomized, placebo-controlled study of GKT137831 in patients with type 1 diabetes and kidney disease is currently underway²²³. In another phase II trial, isuzinaxib (APX-115), a novel pan NOX inhibitor, was found to significantly reduce albuminuria and to be safe and well-tolerated in patients with type 2 diabetes and CKD²²⁴. A further study is underway to assess the ability of isuzinaxib to prevent contrast-induced AKI in patients undergoing percutaneous coronary intervention (NCT05758896)²²⁵.

ASK1 inhibitors

The ASK (apoptosis signal-regulating kinase) family of enzymes is activated in response to various stressors, including oxidative stress and high glucose levels. ASK1 is activated by ROS and advanced glycation end products, leading to the activation of the p38 MAPK signalling

pathway and kidney fibrosis²²⁶. *Ask1*-knockout mice are protected from IRI and UUO-induced kidney injury, in association with suppressed p38 MAPK and c-Jun N-terminal kinase signalling^{227,228}. The ASK1 inhibitor, GS-444217, also improved pathological features of DKD, such as albuminuria, glomerulosclerosis, podocyte loss and tubulointerstitial fibrosis in db/db eNOS^{-/-} mice. Renal biopsy tissue from patients with diabetes shows evidence of ASK1 activation²²⁹.

A phase II clinical trial of the ASK1 inhibitor, selonsertib, in 333 adults with moderate to advanced type 2 diabetes and CKD who did not respond to standard treatment did not meet its primary end point of change from baseline estimated glomerular filtration rate (eGFR) after 48 weeks. However, an exploratory post hoc analysis suggested that selonsertib may delay the progression of DKD²³⁰.

Nrf2 regulators

Bardoxolone methyl is a synthetic triterpenoid compound that was developed as a potential therapeutic agent for malignant tumours. It is thought to inhibit the NF- κ B pathway and to activate the Nrf2 transcription factor, which as described earlier, has a crucial role in regulating defence mechanisms against oxidative stress in the kidney. It is currently in clinical trials to evaluate its efficacy in various kidney diseases (Table 3).

Trial Trial number Aetiology **Baseline kidney function** Number of Outcome Dose Recruitment or reference patients enrolled (mg per day) status BEAM 235 DKD eGFR 20-45 ml/min/1.73 m² 227 25-100 Completed Increase in mean eGFR: 8.2±1.5ml/min/1.73m² (25-mg group), 11.4±1.5 ml/ min/1.73 m² (75-mg group) and 10.4±1.5 ml/min/1.73 m² (100-mg group) at 24 weeks MERLIN NCT04702997 CKD eGFR ≥20 to <60 ml/min/1.73 m² 81 5-30 Completed The results of this trial and UACR ≥300 mg/g; or eGFR are available on the ClinicalTrials.gov website. decline at a rate of ≥4 ml/ There are no published min/1.73 m² in prior year; or haematuria defined as >5-10 results. RBCs per high power field DKD eGFR ≥30 to <60 ml/ 5–15 Significant improvement in TSUBAKI 237 120 Completed min/1.73 m² and UACR GFR as measured by inulin <300mg/g; or eGFR ≥15 to clearance <30 ml/min/1.73 m² and UACR 6.64 ml/min/1.73 m²; P=0.008 <2,000 mg/g at 16 weeks PHOENIX NCT03366337 T1DM, IgAN, eGFR between ≥30 and 103 5-30 Completed The results of this trial are ≤90 ml/min/1.73 m² and UACR FSGS and available on the Clinical Trials. ADPKD ≤2,500 mg/g gov website. There are no published results. Preservation of eGFR relative CARDINAL NCT03019185 eGFR 30-90 ml/min/1.73 m² 5-30 Alport 157 Completed and UACR ≤3,500 mg/g (phase II/III) syndrome to placebo after a 2-year study period BEACON DKD Increase in eGFR of 5.5±0.2 NCT01351675 eGFR between ≥15.0 2,185 20 Terminated and <30.0 ml/min/1.73 m² in 9 months AYAME NCT03550443 DKD eGFR between ≥15 to <30 ml/ 1,013 5–15 Terminated Not published min/1.73 m² and UACR ≤3,500 mg/g FALCON NCT03918447 ADPKD eGFR ≥30 to ≤90 ml/ 850 (estimated) 5-30 Terminated Not published min/1.73 m² and UACR ≤2,500 mg/g

ADPKD, autosomal dominant polycystic kidney disease; CKD, chronic kidney disease; DKD, diabetic kidney disease; eGFR, estimated glomerular filtration rate; FSGS, focal segmental glomerulosclerosis; GFR, glomerular filtration rate; IgAN, IgA nephropathy; RBCs, red blood cells; T1DM, type 1 diabetes mellitus; UACR, urine albumin to creatinine ratio.

Table 3 | Human trials of bardoxolone methyl in kidney disease

Itaconate is a metabolite that activates NRF2 by alkylating a critical cysteine residue in the KEAP1 protein, which blocks KEAP1-dependent proteolysis of NRF2 (refs. 231,232). Itaconate derivatives may therefore be useful in the treatment of inflammatory diseases and may also hold promise for the treatment of kidney disease. In an experimental model of sepsis, pretreatment of mice with 4-octyl itaconate (4-OI), a cell-permeable derivative of endogenous itaconate, alleviated lung injury and inhibited lipid peroxidation and injury of THP1 macrophages. Mechanistically, 4-OI inhibited ferroptosis by promoting the accumulation and activation of Nrf2 (ref. 233).

Bardoxolone methyl for the treatment of DKD. The improvement in eGFR levels in a phase I trial of patients with malignancy²³⁴ was the driving force behind the initiation of a clinical trial in patients with type 2 diabetes mellitus with CKD. In the phase II BEAM study in patients with type 2 diabetes and CKD, patients receiving bardoxolone methyl had a significant increase in mean eGFR at week 24 compared to placebo, and this increase was maintained through week 52 (ref. 235). However, the subsequent phase III BEACON trial²³⁶, was terminated early, after a median follow-up of 9 months, due to a higher incidence of cardiovascular events in the bardoxolone methyl group. At the time of termination, the incidence of the primary end point (a composite of kidney failure or death from cardiovascular causes) was similar in both the bardoxolone methyl group (69 of 1,088; 6%) and the placebo group (69 of 1,097; 6%), indicating no significant difference, despite a significant increase in eGFR, blood pressure and urinary albumin to creatinine ratio in the bardoxolone methyl group²³⁶. The phase II TSUBAKI study enrolled patients with stage 3 and 4 CKD and type 2 diabetes in Japan²³⁷, and importantly excluded participants with a history of heart failure, or a brain natriuretic peptide (BNP) level greater than 200 pg/ml. After 16 weeks of treatment, the bardoxolone methyl group showed an increase in GFR compared to baseline (6.64 ml/min/1.73 m² increase), and the drug was well tolerated with no evidence of fluid retention. The phase III AYAME study was conducted to further investigate the effect of bardoxolone methyl on CKD in patients with CKD stages 3 and 4. Results have not yet been reported²³⁸.

Bardoxolone methyl for the treatment of Alport syndrome. Alport syndrome is the second most common inherited cause of kidney failure. In the phase II/III CARDINAL study (NCT03019185)²³⁹ treatment with bardoxolone methyl on top of standard therapy resulted in preservation of eGFR among adolescent and adult patients with Alport syndrome compared with placebo at 48 and 100 weeks after randomization. However, this benefit disappeared after treatment discontinuation²⁴⁰.

Bardoxolone methyl for the treatment of autosomal dominant polycystic kidney disease. The FALCON study (NCT03918447)²⁴¹ is a multinational, placebo-controlled phase III clinical trial that aims to evaluate the safety and efficacy of bardoxolone methyl in patients with autosomal dominant polycystic kidney disease (ADPKD). The study has two primary end points, including changes in the eGFR at week 108 and the number of adverse events reported during the 112-week study period. The EAGLE study (NCT03749447)²⁴² is an ongoing, international, multicentre, open-label study, that aims to provide expanded access to patients enrolled in the CARDINAL and FALCON studies. The primary aim of the study is to assess alterations in eGFR after 12 weeks in individuals who have received the initial dose of the drug.

Bardoxolone methyl for treatment of progressive and rare forms of CKD. The MERLIN study (NCT04702997)²⁴³ is a multicentre,

placebo-controlled, phase II trial that aims to investigate the use of bardoxolone methyl in patients with CKD who are at risk of rapid kidney function decline. The PHOENIX study (NCT03366337) is a phase II clinical trial²¹⁶ that aims to assess the safety, tolerability and efficacy of bardoxolone methyl in patients with rare forms of CKD, including that associated with type 1 diabetes, IgA nephropathy, focal segmental glomerulosclerosis and ADPKD.

Conclusions

Oxygen is essential for life; however, it can also produce ROS, which at excess levels can adversely affect lipids, proteins, DNA and other cellular components. Maintaining a balance between ROS production and antioxidant consumption is crucial for maintaining redox balance. Insufficient levels of antioxidants or the excess production of ROS induces a state of oxidative stress. The imbalance between the production and consumption of ROS can be caused by various factors, including lifestyle and environmental factors, underlying health conditions and the natural ageing process, and can exacerbate disease conditions, including CKD. Insights into the mechanisms by which ROS are produced, the factors that contribute to their balance, and their homeostatic and pathogenic functions will be necessary to identify specific and safe therapeutic targets in CKD and other diseases that are associated with oxidative stress.

Published online: 19 October 2023

References

- Sies, H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4, 180–183 (2015).
- Harman, D. Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontology 10, 773–781 (2009).
- Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K. & Finkel, T. Requirement for generation of H₂O₂ for platelet-derived growth factor signal transduction. *Science* 270, 296–299 (1995).
- Rhee, S. G. Cell signaling. H₂O₂, a necessary evil for cell signaling. Science **312**, 1882–1883 (2006).
- 5. Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q. & Griendling, K. K. Reactive
- oxygen species in metabolic and inflammatory signaling. *Circ. Res.* 122, 877–902 (2018).
 Martínez-Reyes, I. et al. TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. *Mol. Cell* 61, 199–209 (2016).
- Oliveira-Marques, V., Marinho, H. S., Cyrne, L. & Antunes, F. Role of hydrogen peroxide in NF-kB activation: from inducer to modulator. *Antioxid. Redox Signal.* 11, 2223–2243 (2009).
- Ruiz, S., Pergola, P. E., Zager, R. A. & Vaziri, N. D. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. *Kidney Int.* 83, 1029–1041 (2013).
- Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. *Nature* 404, 787–790 (2000).
- Satoh, M. et al. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. *Am. J. Physiol. Ren. Physiol.* 288, F1144–F1152 (2005).
- Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).
- Kunsch, C. & Medford, R. M. Oxidative stress as a regulator of gene expression in the vasculature. *Circ. Res.* 85, 753–766 (1999).
- Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. *Redox Biol.* 11, 613–619 (2017).
- Rhee, S. G. Redox signaling: hydrogen peroxide as intracellular messenger. *Exp. Mol. Med.* 31, 53–59 (1999).
- Carlström, M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat. Rev. Nephrol. 17, 575–590 (2021).
- Zorov, D. B., Juhaszova, M. & Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. *Physiol. Rev.* 94, 909–950 (2014).
- Martínez, M. C. & Andriantsitohaina, R. Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. *Antioxid. Redox Signal.* 11, 669–702 (2009).
- Drummond, G. R., Selemidis, S., Griendling, K. K. & Sobey, C. G. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. *Nat. Rev. Drug. Discov.* 10, 453–471 (2011).
- 19. Koppenol, W. H. The Haber–Weiss cycle 70 years later. *Redox Rep.* **6**, 229–234 (2001).
- Nakamura, H., Nakamura, K. & Yodoi, J. Redox regulation of cellular activation. Annu. Rev. Immunol. 15, 351–369 (1997).

- Lobo, V., Patil, A., Phatak, A. & Chandra, N. Free radicals, antioxidants and functional foods: impact on human health. *Pharmacogn. Rev.* 4, 118–126 (2010).
- Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158–167 (2012).
- Finkel, T. Signal transduction by mitochondrial oxidants. J. Biol. Chem. 287, 4434–4440 (2012).
- Li, Y. et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. *Nat. Genet.* 11, 376–381 (1995).
- Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).
- 26. Davies, K. J. Adaptive homeostasis. Mol. Asp. Med. 49, 1-7 (2016).
- Peris, E. et al. Antioxidant treatment induces reductive stress associated with mitochondrial dysfunction in adipocytes. J. Biol. Chem. 294, 2340–2352 (2019).
- Xiao, W. & Loscalzo, J. Metabolic responses to reductive stress. Antioxid. Redox Signal. 32 1330–1347 (2020)
- Scherz-Shouval, R. et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atq4. *EMBO J.* 26, 1749–1760 (2007).
- Uchida, T. et al. The effect of long-term inorganic iodine on intrathyroidal iodothyronine content and gene expression in mice with Graves' hyperthyroidism. *Thyroid* 33, 330–337 (2023).
- 31. Guzy, R. D. et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. *Cell Metab.* **1**, 401–408 (2005).
- Colman, R. J. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–204 (2009).
- Mattison, J. A. et al. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8, 14063 (2017).
- Roth, G. S. et al. Biomarkers of caloric restriction may predict longevity in humans. Science 297, 811 (2002).
- López-Lluch, G. et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl Acad. Sci. USA 103, 1768–1773 (2006).
- Saunders, L. R. & Verdin, E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26, 5489–5504 (2007).
- Tracz, M. J., Alam, J. & Nath, K. A. Physiology and pathophysiology of heme: implications for kidney disease. J. Am. Soc. Nephrol. 18, 414–420 (2007).
- Nath, M. & Agarwal, A. New insights into the role of heme oxygenase-1 in acute kidney injury. Kidney Res. Clin. Pract. 39, 387-401 (2020).
- Gozzelino, R., Jeney, V. & Soares, M. P. Mechanisms of cell protection by heme oxygenase 1. Annu. Rev. Pharmacol. Toxicol. 50, 323–354 (2010).
- Blydt-Hansen, T. D. et al. Gene transfer-induced local heme oxygenase-1 overexpression protects rat kidney transplants from ischemia/reperfusion injury. J. Am. Soc. Nephrol. 14, 745–754 (2003).
- Shimizu, H. et al. Protective effect of heme oxygenase induction in ischemic acute renal failure. Crit. Care Med. 28, 809–817 (2000).
- Nakahira, K. et al. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J. Exp. Med. 203, 2377–2389 (2006).
- 43. Stocker, R., Yamamoto, Y., McDonagh, A. F., Glazer, A. N. & Ames, B. N. Bilirubin is an
- antioxidant of possible physiological importance. Science 235, 1043–1046 (1987).
 Valtin, H. Renal function: mechanisms preserving fluid and solute balance in health. Arch. Surg. 109, 462–463 (1973).
- Forbes, J. M. & Thorburn, D. R. Mitochondrial dysfunction in diabetic kidney disease. Nat. Rev. Nephrol. 14, 291–312 (2018).
- Li, X. et al. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J. Hematol. Oncol. 6, 19 (2013).
- Pizzino, G. et al. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell Longev. 2017, 8416763 (2017).
- Zeeshan, H. M., Lee, G. H., Kim, H. R. & Chae, H. J. Endoplasmic reticulum stress and associated ROS. Int. J. Mol. Sci. 17, 327 (2016).
- Lee, Y. M., He, W. & Liou, Y. C. The redox language in neurodegenerative diseases: oxidative post-translational modifications by hydrogen peroxide. *Cell Death Dis.* 12, 58 (2021).
- Antonenkov, V. D., Grunau, S., Ohlmeier, S. & Hiltunen, J. K. Peroxisomes are oxidative organelles. Antioxid. Redox Signal. 13, 525–537 (2010).
- Litwin, J. A., Völkl, A., Müller-Höcker, J. & Fahimi, H. D. Immunocytochemical demonstration of peroxisomal enzymes in human kidney biopsies. *Virchows Arch. B Cell Pathol. Incl. Mol. Pathol.* 54, 207–213 (1988).
- Litwin, J. A., Völkl, A., Stachura, J. & Fahimi, H. D. Detection of peroxisomes in human liver and kidney fixed with formalin and embedded in paraffin: the use of catalase and lipid β-oxidation enzymes as immunocytochemical markers. *Histochem. J.* 20, 165–173 (1988).
- Sedeek, M., Nasrallah, R., Touyz, R. M. & Hébert, R. L. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J. Am. Soc. Nephrol. 24, 1512–1518 (2013).
- Groemping, Y., Lapouge, K., Smerdon, S. J. & Rittinger, K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113, 343–355 (2003).
- Muñoz, M. et al. Hydrogen peroxide derived from NADPH oxidase 4- and 2 contributes to the endothelium-dependent vasodilatation of intrarenal arteries. *Redox Biol.* 19, 92–104 (2018).
- Fukuda, M. et al. Potentiation by candesartan of protective effects of pioglitazone against type 2 diabetic cardiovascular and renal complications in obese mice. J. Hypertens. 28, 340–352 (2010).

- 57. Oudit, G. Y. et al. Human recombinant ACE2 reduces the progression of diabetic nephropathy. *Diabetes* **59**, 529–538 (2010).
- Irazabal, M. V. & Torres, V. E. Reactive oxygen species and redox signaling in chronic kidney disease. *Cells* 9, 1342 (2020).
- Nlandu Khodo, S. et al. NADPH-oxidase 4 protects against kidney fibrosis during chronic renal injury. J. Am. Soc. Nephrol. 23, 1967–1976 (2012).
- Hille, R. & Nishino, T. Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. FASEB J. 9, 995–1003 (1995).
- Nishino, T. The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury. J. Biochem. 116, 1–6 (1994).
- 62. Li, H., Horke, S. & Förstermann, U. Oxidative stress in vascular disease and its
- pharmacological prevention. *Trends Pharmacol. Sci.* **34**, 313–319 (2013). 63. George, J., Carr, F., Davies, J., Belch, J. J. & Struthers, A. High-dose allopurinol improves
- George, J., Carr, E., Davies, J., Belch, J. J. & Struthers, A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. *Circulation* 114, 2508–2516 (2006).
- Itano, S. et al. Non-purine selective xanthine oxidase inhibitor ameliorates glomerular endothelial injury in Ins(Akita) diabetic mice. Am. J. Physiol. Ren. Physiol. 319, F765–F772 (2020).
- Winterbourn, C. C., Kettle, A. J. & Hampton, M. B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 85, 765–792 (2016).
- Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).
- Kenny, E. F. et al. Diverse stimuli engage different neutrophil extracellular trap pathways. *Elife* 6, e24437 (2017).
- Stendahl, O., Coble, B. I., Dahlgren, C., Hed, J. & Molin, L. Myeloperoxidase modulates the phagocytic activity of polymorphonuclear neutrophil leukocytes. Studies with cells from a myeloperoxidase-deficient patient. J. Clin. Invest. 73, 366–373 (1984).
- Daugherty, A., Dunn, J. L., Rateri, D. L. & Heinecke, J. W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest. 94, 437–444 (1994).
- Brennan, M. L. et al. Prognostic value of myeloperoxidase in patients with chest pain. N. Engl. J. Med. 349, 1595–1604 (2003).
- Jennette, J. C. et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 65, 1–11 (2013).
- Kallenberg, C. G. Antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis. Curr. Opin. Rheumatol. 19, 17–24 (2007).
- Falk, R. J., Terrell, R. S., Charles, L. A. & Jennette, J. C. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. *Proc. Natl Acad. Sci. USA* 87, 4115–4119 (1990).
- Malle, E., Buch, T. & Grone, H. J. Myeloperoxidase in kidney disease. Kidney Int. 64, 1956–1967 (2003).
- Zweier, J. L., Wang, P., Samouilov, A. & Kuppusamy, P. Enzyme-independent formation of nitric oxide in biological tissues. *Nat. Med.* 1, 804–809 (1995).
- 76. Benjamin, N. et al. Stomach NO synthesis. Nature 368, 502 (1994).
- Oliveira, F. R. M. G., Assreuy, J. & Sordi, R. The role of nitric oxide in sepsis-associated kidney injury. *Biosci. Rep.* 42, BSR20220093 (2022).
- Kosaka, H. et al. Induction of LOX-1 and iNOS expressions by ischemia-reperfusion of rat kidney and the opposing effect of L-arginine. FASEB J. 17, 636–643 (2003).
- Sordi, R., Menezes-de-Lima, O., Della-Justina, A. M., Rezende, E. & Assreuy, J. Pneumonia-induced sepsis in mice: temporal study of inflammatory and cardiovascular parameters. Int. J. Exp. Pathol. 94, 144–155 (2013).
- Sordi, R., Chiazza, F., Collino, M., Assreuy, J. & Thiemermann, C. Neuronal nitric oxide synthase is involved in vascular hyporeactivity and multiple organ dysfunction associated with hemorrhagic shock. *Shock* 45, 525–533 (2016).
- Baylis, C. Arginine, arginine analogs and nitric oxide production in chronic kidney disease. Nat. Clin. Pract. Nephrol. 2, 209–220 (2006).
- Nishimura, K. et al. Dual disruption of eNOS and ApoE gene accelerates kidney fibrosis and senescence after injury. *Biochem. Biophys. Res. Commun.* 556, 142–148 (2021).
- Knowles, J. W. et al. Enhanced atherosclerosis and kidney dysfunction in eNOS^{-/-}Apoe^{-/-} mice are ameliorated by enalapril treatment. J. Clin. Invest. **105**, 451–458 (2000).
- Carlström, M. et al. Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc. Natl Acad. Sci. USA 107, 17716–17720 (2010).
- Gil, C. L., Hooker, E. & Larrivée, B. Diabetic kidney disease, endothelial damage, and podocyte–endothelial crosstalk. *Kidney Med.* 3, 105–115 (2021).
- Jha, J. C., Banal, C., Chow, B. S., Cooper, M. E. & Jandeleit-Dahm, K. Diabetes and kidney disease: role of oxidative stress. *Antioxid. Redox Signal.* 25, 657–684 (2016).
- Satoh, M. et al. Angiotensin II type 1 receptor blocker ameliorates uncoupled endothelial nitric oxide synthase in rats with experimental diabetic nephropathy. *Nephrol. Dial. Transpl.* 23, 3806–3813 (2008).
- Kidokoro, K. et al. Maintenance of endothelial guanosine triphosphate cyclohydrolase I ameliorates diabetic nephropathy. J. Am. Soc. Nephrol. 24, 1139–1150 (2013).
- Liu, R. et al. The role of macula densa nitric oxide synthase 1 beta splice variant in modulating tubuloglomerular feedback. *Compr. Physiol.* 13, 4215–4229 (2023).
- Song, J. et al. Oxidative status in the macula densa modulates tubuloglomerular feedback responsiveness in angiotensin II-induced hypertension. Acta Physiol. 213, 249–258 (2015).
- Araujo, M. & Welch, W. J. Tubuloglomerular feedback is decreased in COX-1 knockout mice after chronic angiotensin II infusion. Am. J. Physiol. Ren. Physiol. 298, F1059–F1063 (2010).

- Lu, D. et al. Salt-sensitive splice variant of nNOS expressed in the macula densa cells. Am. J. Physiol. Ren. Physiol. 298, F1465–F1471 (2010).
- Lu, Y. et al. Macula densa nitric oxide synthase 1β protects against salt-sensitive hypertension. J. Am. Soc. Nephrol. 27, 2346–2356 (2016).
- Campese, V. M., Parise, M., Karubian, F. & Bigazzi, R. Abnormal renal hemodynamics in black salt-sensitive patients with hypertension. *Hypertension* 18, 805–812 (1991).
- Wei, J. et al. Macula densa NOS1β modulates renal hemodynamics and blood pressure during pregnancy: role in gestational hypertension. J. Am. Soc. Nephrol. 32, 2485–2500 (2021).
- Gielis, J. F. et al. Pathogenetic role of eNOS uncoupling in cardiopulmonary disorders. Free. Radic. Biol. Med. 50, 765–776 (2011).
- Münzel, T., Daiber, A., Ullrich, V. & Mülsch, A. Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. *Arterioscler. Thromb. Vasc. Biol.* 25, 1551–1557 (2005).
- Janaszak-Jasiecka, A., Płoska, A., Wierońska, J. M., Dobrucki, L. W. & Kalinowski, L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. *Cell Mol. Biol. Lett.* 28, 21 (2023).
- Bendall, J. K., Douglas, G., McNeill, E., Channon, K. M. & Crabtree, M. J. Tetrahydrobiopterin in cardiovascular health and disease. *Antioxid. Redox Signal.* 20, 3040–3077 (2014).
- Moens, A. L. & Kass, D. A. Tetrahydrobiopterin and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 26, 2439–2444 (2006).
- 101. Antoniades, C. et al. Altered plasma versus vascular biopterins in human atherosclerosis reveal relationships between endothelial nitric oxide synthase coupling, endothelial function, and inflammation. *Circulation* **116**, 2851–2859 (2007).
- 102. Ismaeel, A. et al. The nitric oxide system in peripheral artery disease: connection with oxidative stress and biopterins. Antioxidants 9, 590 (2020).
- 103. Heitzer, T., Krohn, K., Albers, S. & Meinertz, T. Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with type II diabetes mellitus. *Diabetologia* 43, 1435–1438 (2000).
- Higashi, Y. et al. Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals. *Am. J. Hypertens.* 15, 326–332 (2002).
- Stroes, E. et al. Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J. Clin. Invest. 99, 41–46 (1997).
- Yamamoto, E. et al. The pivotal role of eNOS uncoupling in vascular endothelial dysfunction in patients with heart failure with preserved ejection fraction. *Int. J. Cardiol.* 190, 335–337 (2015).
- Shinozaki, K. et al. Oral administration of tetrahydrobiopterin prevents endothelial dysfunction and vascular oxidative stress in the aortas of insulin-resistant rats. *Circ. Res.* 87, 566–573 (2000).
- Hong, H. J., Hsiao, G., Cheng, T. H. & Yen, M. H. Supplemention with tetrahydrobiopterin suppresses the development of hypertension in spontaneously hypertensive rats. *Hypertension* 38, 1044–1048 (2001).
- Landmesser, U. et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest. 111, 1201–1209 (2003).
- 110. Maier, W. et al. Tetrahydrobiopterin improves endothelial function in patients with coronary artery disease. J. Cardiovasc. Pharmacol. **35**, 173–178 (2000).
- Setoguchi, S., Hirooka, Y., Eshima, K., Shimokawa, H. & Takeshita, A. Tetrahydrobiopterin improves impaired endothelium-dependent forearm vasodilation in patients with heart failure. J. Cardiovasc. Pharmacol. 39, 363–368 (2002).
- Cosentino, F. et al. Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolaemia. *Heart* 94, 487–492 (2008).
- Porkert, M. et al. Tetrahydrobiopterin: a novel antihypertensive therapy. J. Hum. Hypertens. 22, 401–407 (2008).
- Mäki-Petäjä, K. M. et al. Tetrahydrobiopterin supplementation improves endothelial function but does not alter aortic stiffness in patients with rheumatoid arthritis. J. Am. Heart Assoc. 5, e002762 (2016).
- Cunnington, C. et al. Systemic and vascular oxidation limits the efficacy of oral tetrahydrobiopterin treatment in patients with coronary artery disease. *Circulation* 125, 1356–1366 (2012).
- Heller, R. et al. L-Ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J. Biol. Chem. 276, 40–47 (2001).
- Gao, S. Q. et al. Endothelial NOX4 aggravates eNOS uncoupling by decreasing dihydrofolate reductase after subarachnoid hemorrhage. *Free. Radic. Biol. Med.* **193**, 499–510 (2022).
- Wu, G. & Meininger, C. J. Arginine nutrition and cardiovascular function. J. Nutr. 130, 2626–2629 (2000).
- Cylwik, D., Mogielnicki, A. & Buczko, W. L-arginine and cardiovascular system. Pharmacol. Rep. 57, 14–22 (2005).
- Chen, C. A. et al. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. *Nature* 468, 1115–1118 (2010).
 Understand A. Statistical and function.
- Holmgren, A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid. Redox Signal. 2, 811–820 (2000).
- Chen, C. A., De Pascali, F., Basye, A., Hemann, C. & Zweier, J. L. Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification. *Biochemistry* 52, 6712–6723 (2013).

- 123. Subramani, J., Kundumani-Sridharan, V., Hilgers, R. H., Owens, C. & Das, K. C. Thioredoxin uses a GSH-independent route to deglutathionylate endothelial nitric-oxide synthase and protect against myocardial infarction. J. Biol. Chem. 291, 23374–23389 (2016).
- Lennicke, C. & Cochemé, H. M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 81, 3691–3707 (2021).
- Baird, L. & Yamamoto, M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. *Mol. Cell Biol.* 40, e00090-20 (2020).
- Yamamoto, T. et al. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol. Cell Biol. 28, 2758–2770 (2008).
- Nezu, M., Suzuki, N. & Yamamoto, M. Targeting the KEAPI-NRF2 system to prevent kidney disease progression. Am. J. Nephrol. 45, 473–483 (2017).
- Liu, M. et al. Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice. *Kidney Int.* 76, 277–285 (2009).
- Jiang, T. et al. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes 59, 850–860 (2010).
- Kim, H. J. & Vaziri, N. D. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. *Am. J. Physiol. Ren. Physiol.* 298, F662–F671 (2010).
- 131. Kim, H. J., Sato, T., Rodríguez-Iturbe, B. & Vaziri, N. D. Role of intrarenal angiotensin system activation, oxidative stress, inflammation, and impaired nuclear factor-erythroid-2-related factor 2 activity in the progression of focal glomerulosclerosis. J. Pharmacol. Exp. Ther. **337**, 583–590 (2011).
- Eijkelenboom, A. & Burgering, B. M. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14, 83–97 (2013).
- Putker, M. et al. Redox-dependent control of FOXO/DAF-16 by transportin-1. Mol. Cell 49, 730–742 (2013).
- Dansen, T. B. et al. Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat. Chem. Biol. 5, 664–672 (2009).
- Wang, Y. & He, W. Improving the dysregulation of FoxO1 activity is a potential therapy for alleviating diabetic kidney disease. Front. Pharmacol. 12, 630617 (2021).
- 136. Li, N. & Karin, M. Is NF-κB the sensor of oxidative stress? *FASEB J.* **13**, 1137–1143 (1999).
- 137. Sanz, A. B. et al. NF-KB in renal inflammation. J. Am. Soc. Nephrol. **21**, 1254–1262 (2010).
- Zhang, H. & Sun, S. C. NF-κB in inflammation and renal diseases. *Cell Biosci.* 5, 63 (2015).
 Li, W. et al. Activation of Nrf2-antioxidant signaling attenuates NFκB-inflammatory
- response and elicits apoptosis. *Biochem. Pharmacol.* **76**, 1485–1489 (2008). 140. Tanaka, T. & Nangaku, M. Angiogenesis and hypoxia in the kidney. *Nat. Rev. Nephrol.* **9**,
- 211–222 (2013). 141. Akhtar, M. Z., Sutherland, A. I., Huang, H., Ploeg, R. J. & Pugh, C. W. The role of
- hypoxia-inducible factors in organ donation and transplantation: the current perspective and future opportunities. *Am. J. Transpl.* 14, 1481–1487 (2014).
 142. Bernhardt, W. M. et al. Donor treatment with a PHD-inhibitor activating HIFs prevents
- 142. bermardt, w. M. et al. Donor treatment with a PHD-inhibitor activating HIPs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proc. Natl Acad. Sci. USA 106, 21276–21281 (2009).
- Matsumoto, M. et al. Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J. Am. Soc. Nephrol. 14, 1825–1832 (2003).
 Substantian M. Alexandra T. & Nacadara M. Humania and a the kidney in the second second
- 144. Sugahara, M., Tanaka, T. & Nangaku, M. Hypoxia-inducible factor and oxygen biology in the kidney. *Kidney360* 1, 1021–1031 (2020).
- Iguchi, M. et al. Acute inactivation of the VHL gene contributes to protective effects of ischemic preconditioning in the mouse kidney. Nephron Exp. Nephrol. 110, e82–e90 (2008).
- Hill, P. et al. Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 19, 39–46 (2008).
- 147. Kojima, I. et al. Protective role of hypoxia-inducible factor-2α against ischemic damage and oxidative stress in the kidney. J. Am. Soc. Nephrol. 18, 1218–1226 (2007).
- Ito, M. et al. Prolyl hydroxylase inhibition protects the kidneys from ischemia via upregulation of glycogen storage. *Kidney Int.* 97, 687-701 (2020).
- Kapitsinou, P. P. et al. Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury. *Am. J. Physiol. Ren. Physiol.* **302**, F1172–F1179 (2012).
- Wang, Z. et al. The protective effect of prolyl-hydroxylase inhibition against renal ischaemia requires application prior to ischaemia but is superior to EPO treatment. Nephrol. Dial. Transpl. 27, 929–936 (2012).
- Rosenberger, C. et al. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int. 73, 34–42 (2008).
- 152. Yamanaka, S. et al. Adipose tissue-derived mesenchymal stem cells in long-term dialysis patients display downregulation of PCAF expression and poor angiogenesis activation. *PLoS One* 9, e102311 (2014).
- Malhotra, J. D. & Kaufman, R. J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword. Antioxid. Redox Signal. 9, 2277–2293 (2007).
- Cao, S. S. & Kaufman, R. J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. *Antioxid. Redox Signal.* 21, 396–413 (2014).
- Cybulsky, A. V. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. *Nat. Rev. Nephrol.* **13**, 681–696 (2017).
- Dvela-Levitt, M. et al. Small molecule targets TMED9 and promotes lysosomal dearadation to reverse proteinopathy. *Cell* **178**, 521–535,e3 (2019).
- Yamashita, K. et al. Mitotic phosphorylation of Pex14p regulates peroxisomal import machinery. J. Cell Biol. 219, e202001003 (2020).
- Okumoto, K. et al. The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation. *Elife* 9, e55896 (2020).

- Gulati, S. et al. Ischemia-reperfusion injury: biochemical alterations in peroxisomes of rat kidney. Arch. Biochem. Biophys. 295, 90–100 (1992).
- Vasko, R. Peroxisomes and kidney injury. Antioxid. Redox Signal. 25, 217–231 (2016).
 Al-Mehdi, A. B. et al. Perinuclear mitochondrial clustering creates an oxidant-rich nuclear
- domain required for hypoxia-induced transcription. Sci. Signal. **5**, ra47 (2012). 162. Murphy, M. P. Modulating mitochondrial intracellular location as a redox signal.
- Sci. Signal. 5, pe39 (2012).
 163. Van Houten, B., Woshner, V. & Santos, J. H. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair 5, 145–152 (2006).
- Nadalutti, C. A., Ayala-Peña, S. & Santos, J. H. Mitochondrial DNA damage as driver of cellular outcomes. Am. J. Physiol. Cell Physiol. 322. C136–C150 (2022).
- Nissanka, N. & Moraes, C. T. Mitochondrial DNA damage and reactive oxygen species in neurodecenerative disease. FEBS Lett. 592, 728–742 (2018).
- Rottenberg, H. & Hoek, J. B. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. *Aging Cell* 16, 943–955 (2017).
- Lan, R. et al. Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J. Am. Soc. Nephrol. 27, 3356–3367 (2016).
- Duann, P. & Lin, P. H. Mitochondria damage and kidney disease. Adv. Exp. Med. Biol. 982, 529–551 (2017).
- 169. Gohil, V. M. et al. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. *Nat. Biotechnol.* 28, 249–255 (2010).
- Kishi, S. et al. Meclizine preconditioning protects the kidney against ischemia-reperfusion injury. *EBioMedicine* 2, 1090–1101 (2015).
- Tang, C. et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. *Autophagy* 14, 880–897 (2018).
- Hashizume, O. et al. Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development. *Proc. Natl Acad. Sci. USA* **109**, 10528–10533 (2012).
- 173. Dieter, B. P. et al. Novel therapies for diabetic kidney disease: storied past and forward paths. *Diabetes Spectr.* **28**, 167–174 (2015).
- Susztak, K., Raff, A. C., Schiffer, M. & Böttinger, E. P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. *Diabetes* 55, 225–233 (2006).
- Dugan, L. L. et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Invest. 123, 4888–4899 (2013).
- Maremonti, F., Meyer, C. & Linkermann, A. Mechanisms and models of kidney tubular necrosis and nephron loss. J. Am. Soc. Nephrol. 33, 472–486 (2022).
- Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. *Cell* 149, 1060–1072 (2012).
- Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. *Nat. Cell Biol.* 16, 1180–1191 (2014).
- Martin-Sanchez, D. et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J. Am. Soc. Nephrol. 28, 218–229 (2017).
- Zeitler, L. et al. Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. *Elife* 10, e64806 (2021).
- Mishima, E. et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778–783 (2022).
- Mishima, E. et al. Drugs repurposed as antiferroptosis agents suppress organ damage, including AKI, by functioning as lipid peroxyl radical scavengers. J. Am. Soc. Nephrol. 31, 280–296 (2020).
- Yuan, J., Amin, P. & Ofengeim, D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 20, 19–33 (2019).
- Deragon, M. A. et al. Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necroptosis. *Cell Death Discov.* 6, 132 (2020).
- Chen, H. et al. RIPK3-MLKL-mediated necroinflammation contributes to AKI progression to CKD. Cell Death Dis. 9, 878 (2018).
- Collins, L. V., Hajizadeh, S., Holme, E., Jonsson, I. M. & Tarkowski, A. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. *J. Leukoc. Biol.* **75**, 995–1000 (2004).
- Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. *Nat. Immunol.* 12, 222–230 (2011).
- Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. *Immunity* 36, 401–414 (2012).
- West, A. P. & Shadel, G. S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17, 363–375 (2017).
- Chung, K. W. et al. Mitochondrial damage and activation of the sting pathway lead to renal inflammation and fibrosis. *Cell Metab.* 30, 784–799.e5 (2019).
- Maekawa, H. et al. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep. 29, 1261–1273.e6 (2019).
- Janikiewicz, J. et al. Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics. *Cell Death Dis.* 9, 332 (2018).
- Yang, M. et al. DsbA-L ameliorates high glucose induced tubular damage through maintaining MAM integrity. *EBioMedicine* 43, 607–619 (2019).
- Xue, M. et al. PACS-2 attenuates diabetic kidney disease via the enhancement of mitochondria-associated endoplasmic reticulum membrane formation. *Cell Death Dis.* 12, 1107 (2021).
- Canaud, G. & Bonventre, J. V. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol. Dial. Transpl. 30, 575–583 (2015).

- He, W. et al. Wnt/β-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol. 20, 765–776 (2009).
- Liu, B. C., Tang, T. T., Lv, L. L. & Lan, H. Y. Renal tubule injury: a driving force toward chronic kidney disease. *Kidney Int.* 93, 568–579 (2018).
- Steinhubl, S. R. Why have antioxidants failed in clinical trials? Am. J. Cardiol. 101, 14d–19d (2008).
- Ardanaz, N. et al. Lack of glutathione peroxidase 1 accelerates cardiac-specific hypertrophy and dysfunction in angiotensin II hypertension. *Hypertension* 55, 116–123 (2010).
- Daenen, K. et al. Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 34, 975–991 (2019).
- Griendling, K. K. et al. Oxidative stress and hypertension. *Circ. Res.* **128**, 993–1020 (2021).
 Te Riet, L., van Esch, J. H., Roks, A. J., van den Meiracker, A. H. & Danser, A. H. Hypertension:
- renin-angiotensin-aldosterone system alterations. Circ. Res. 116, 960–975 (2015).
 203. Ruggenenti, P. et al. Preventing microalbuminuria in type 2 diabetes. N. Engl. J. Med. 351, 1941–1951 (2004).
- 204. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. *N. Engl. J. Med.* **345**, 851–860 (2001).
- 205. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).
- Nistala, R., Wei, Y., Sowers, J. R. & Whaley-Connell, A. Renin-angiotensin-aldosterone system-mediated redox effects in chronic kidney disease. *Transl. Res.* 153, 102–113 (2009).
- Terami, N. et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS ONE 9, e100777 (2014).
- Novikov, A. et al. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. Am. J. Physiol. Ren. Physiol. 316, F173–F185 (2019).
- Wilcox, C. S. Antihypertensive and renal mechanisms of SGLT2 (sodium-glucose linked transporter 2) inhibitors. *Hypertension* 75, 894–901 (2020).
- Gager, G. M. et al. Effects of SGLT2 inhibitors on ion homeostasis and oxidative stress associated mechanisms in heart failure. *Biomed. Pharmacother.* 143, 112169 (2021).
- Carlström, M., Wilcox, C. S. & Arendshorst, W. J. Renal autoregulation in health and disease. *Physiol. Rev.* 95, 405–511 (2015).
- Yaribeygi, H., Butler, A. E., Atkin, S. L., Katsiki, N. & Sahebkar, A. Sodium-glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: possible molecular pathways. J. Cell Physiol. 234, 223–230 (2018).
- Aroor, A. R. et al. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. *Cardiovasc. Diabetol.* 17, 108 (2018).
- Lei, C. et al. Nitric oxide decreases acute kidney injury and stage 3 chronic kidney disease after cardiac surgery. Am. J. Respir. Crit. Care Med. 198, 1279–1287 (2018).
- Marrazzo, F. et al. Protocol of a randomised controlled trial in cardiac surgical patients with endothelial dysfunction aimed to prevent postoperative acute kidney injury by administering nitric oxide gas. *BMJ Open.* 9, e026848 (2019).
- US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/ NCT02836899 (2022).
- US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/ NCT04022161 (2022).
- Stasch, J. P., Schlossmann, J. & Hocher, B. Renal effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. *Curr. Opin. Pharmacol.* 21, 95–104 (2015).
- Hanrahan, J. P. et al. Effects of the soluble guanylate cyclase stimulator praliciguat in diabetic kidney disease: a randomized placebo-controlled clinical trial. *Clin. J. Am. Soc. Nephrol.* 16, 59–69 (2020).
- Breyer, M. D. & Susztak, K. The next generation of therapeutics for chronic kidney disease. Nat. Rev. Drug. Discov. 15, 568–588 (2016).
- US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/ NCT02156843 (2016).
- 222. Jha, J. C. et al. Genetic targeting or pharmacologic inhibition of NADPH oxidase Nox4 provides renoprotection in long-term diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1237–1254 (2014).
- 223. Reutens, A. T. et al. A physician-initiated double-blind, randomised, placebo-controlled, phase 2 study evaluating the efficacy and safety of inhibition of NADPH oxidase with the first-in-class Nox-1/4 inhibitor, GKT137831, in adults with type 1 diabetes and persistently elevated urinary albumin excretion: protocol and statistical considerations. Contemp. Clin. Trials **90**, 105892 (2020).
- US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/ NCT04534439 (2021).
- 225. US National Library of Medicine. *ClinicalTrials.gov* https://clinicaltrials.gov/study/ NCT05758896 (2023).
- Tesch, G. H., Ma, F. Y. & Nikolic-Paterson, D. J. ASK1: a new therapeutic target for kidney disease. Am. J. Physiol. Ren. Physiol. 311, F373–F381 (2016).
- 227. Ma, F. Y., Tesch, G. H. & Nikolic-Paterson, D. J. ASK1/p38 signaling in renal tubular epithelial cells promotes renal fibrosis in the mouse obstructed kidney. *Am. J. Physiol. Ren. Physiol.* **307**, F1263–F1273 (2014).
- Terada, Y. et al. Important role of apoptosis signal-regulating kinase 1 in ischemic acute kidney injury. Biochem. Biophys. Res. Commun. 364, 1043–1049 (2007).

- 229. Liles, J. T. et al. ASK1 contributes to fibrosis and dysfunction in models of kidney disease. J. Clin. Invest. **128**, 4485–4500 (2018).
- Chertow, G. M. et al. Effects of selonsertib in patients with diabetic kidney disease. J. Am. Soc. Nephrol. 30, 1980–1990 (2019).
- Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAPI. Nature 556, 113–117 (2018).
- Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. *Cell Metab.* 24, 158–166 (2016).
- 233. He, R. et al. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury. *Cell Death Discov.* **8**, 43 (2022).
- 234. Hong, D. S. et al. A phase I first-in-human trial of bardoxolone methyl in patients with advanced solid tumors and lymphomas. *Clin. Cancer Res.* **18**, 3396–3406 (2012).
- Pergola, P. E. et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N. Engl. J. Med. 365, 327–336 (2011).
- 236. de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492–2503 (2013).
- Nangaku, M. et al. Randomized clinical trial on the effect of bardoxolone methyl on GFR in diabetic kidney disease patients (TSUBAKI study). *Kidney Int. Rep.* 5, 879–890 (2020).
- 238. Nangaku, M. et al. Randomized, double-blind, placebo-controlled phase 3 study of bardoxolone methyl in patients with diabetic kidney disease: design and baseline characteristics of AYAME study. *Nephrol. Dial. Transpl.* **38**, 1204–1216 (2022).
- US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/ NCT03019185 (2022).
- Warady, B. A. et al. Effects of bardoxolone methyl in Alport syndrome. Clin. J. Am. Soc. Nephrol. 17, 1763–1774 (2022).
- US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/ NCT03918447 (2023).

- US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/ NCT03749447 (2023).
- US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/ NCT04702997 (2022).

Author contributions

N.K. developed the article outline, and S.K. drafted the first version. All authors contributed to researching data for the article, participated in discussions about the content, and reviewed and edited the manuscript before submission.

Competing interests

N.K. has received lecture fees from Astellas, AstraZeneca, Kyowa-Kirin, Novartis and Otsuka; research funding from AstraZeneca, Daiichi Sankyo, Kyowa-Kirin, Novartis and Otsuka; and has served as an adviser for Kyowa-Kirin and Novartis. The other authors declare no conflicts of interest.

Additional information

Peer review information Nature Reviews Nephrology thanks Lin Sun, Mattias Carlstrom and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© Springer Nature Limited 2023